L11a125

From Knot Atlas
Jump to: navigation, search

L11a124.gif

L11a124

L11a126.gif

L11a126

Contents

L11a125.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a125 at Knotilus!


Link Presentations

[edit Notes on L11a125's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X18,8,19,7 X20,10,21,9 X22,12,5,11 X8,20,9,19 X10,22,11,21 X16,14,17,13 X12,18,13,17 X2536 X4,16,1,15
Gauss code {1, -10, 2, -11}, {10, -1, 3, -6, 4, -7, 5, -9, 8, -2, 11, -8, 9, -3, 6, -4, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a125 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(2 v^4-v^3+2 v^2-v+2\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial q^{23/2}-3 q^{21/2}+5 q^{19/2}-7 q^{17/2}+10 q^{15/2}-10 q^{13/2}+9 q^{11/2}-8 q^{9/2}+5 q^{7/2}-4 q^{5/2}+q^{3/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial z^5 a^{-9} +3 z^3 a^{-9} +z a^{-9} -z^7 a^{-7} -4 z^5 a^{-7} -3 z^3 a^{-7} +2 z a^{-7} +2 a^{-7} z^{-1} -z^7 a^{-5} -5 z^5 a^{-5} -9 z^3 a^{-5} -10 z a^{-5} -5 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +7 z a^{-3} +3 a^{-3} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-6} -z^{10} a^{-8} -z^9 a^{-5} -4 z^9 a^{-7} -3 z^9 a^{-9} -z^8 a^{-4} +3 z^8 a^{-6} -4 z^8 a^{-10} -z^7 a^{-3} +z^7 a^{-5} +15 z^7 a^{-7} +9 z^7 a^{-9} -4 z^7 a^{-11} +3 z^6 a^{-4} -5 z^6 a^{-6} +5 z^6 a^{-8} +9 z^6 a^{-10} -4 z^6 a^{-12} +6 z^5 a^{-3} +10 z^5 a^{-5} -18 z^5 a^{-7} -14 z^5 a^{-9} +5 z^5 a^{-11} -3 z^5 a^{-13} +2 z^4 a^{-4} +13 z^4 a^{-6} -5 z^4 a^{-8} -10 z^4 a^{-10} +5 z^4 a^{-12} -z^4 a^{-14} -12 z^3 a^{-3} -20 z^3 a^{-5} +7 z^3 a^{-7} +9 z^3 a^{-9} -2 z^3 a^{-11} +4 z^3 a^{-13} -9 z^2 a^{-4} -13 z^2 a^{-6} +z^2 a^{-8} +3 z^2 a^{-10} -z^2 a^{-12} +z^2 a^{-14} +10 z a^{-3} +15 z a^{-5} +3 z a^{-7} -2 z a^{-9} +5 a^{-4} +5 a^{-6} - a^{-10} -3 a^{-3} z^{-1} -5 a^{-5} z^{-1} -2 a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
24           1-1
22          2 2
20         31 -2
18        42  2
16       63   -3
14      44    0
12     56     1
10    34      -1
8   25       3
6  23        -1
4 14         3
2            0
01           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4} {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a124.gif

L11a124

L11a126.gif

L11a126