L11a129

From Knot Atlas
Jump to: navigation, search

L11a128.gif

L11a128

L11a130.gif

L11a130

Contents

L11a129.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a129 at Knotilus!


Link Presentations

[edit Notes on L11a129's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X18,10,19,9 X16,12,17,11 X12,16,13,15 X10,18,11,17 X22,19,5,20 X20,7,21,8 X8,21,9,22 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 8, -9, 3, -6, 4, -5, 11, -2, 5, -4, 6, -3, 7, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a129 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(1) t(2)^3-3 t(2)^3-6 t(1) t(2)^2+6 t(2)^2+6 t(1) t(2)-6 t(2)-3 t(1)+2}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -q^{5/2}+3 q^{3/2}-5 \sqrt{q}+\frac{7}{\sqrt{q}}-\frac{9}{q^{3/2}}+\frac{10}{q^{5/2}}-\frac{11}{q^{7/2}}+\frac{8}{q^{9/2}}-\frac{7}{q^{11/2}}+\frac{4}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^9 z^{-1} +3 z a^7+3 a^7 z^{-1} -3 z^3 a^5-5 z a^5-2 a^5 z^{-1} +z^5 a^3+z^3 a^3+z^5 a+2 z^3 a+z a-z^3 a^{-1} -z a^{-1} (db)
Kauffman polynomial -z^4 a^{10}+2 z^2 a^{10}-a^{10}-2 z^5 a^9+3 z^3 a^9-2 z a^9+a^9 z^{-1} -2 z^6 a^8-z^4 a^8+5 z^2 a^8-3 a^8-2 z^7 a^7-2 z^5 a^7+7 z^3 a^7-7 z a^7+3 a^7 z^{-1} -2 z^8 a^6+z^4 a^6+3 z^2 a^6-3 a^6-2 z^9 a^5+3 z^7 a^5-4 z^5 a^5+7 z^3 a^5-5 z a^5+2 a^5 z^{-1} -z^{10} a^4-z^8 a^4+8 z^6 a^4-7 z^4 a^4+2 z^2 a^4-5 z^9 a^3+17 z^7 a^3-16 z^5 a^3+6 z^3 a^3-z a^3-z^{10} a^2-2 z^8 a^2+19 z^6 a^2-23 z^4 a^2+7 z^2 a^2-3 z^9 a+11 z^7 a-8 z^5 a-z^3 a-3 z^8+13 z^6-15 z^4+5 z^2-z^7 a^{-1} +4 z^5 a^{-1} -4 z^3 a^{-1} +z a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
6           11
4          2 -2
2         31 2
0        42  -2
-2       53   2
-4      65    -1
-6     54     1
-8    36      3
-10   45       -1
-12  14        3
-14 13         -2
-16 1          1
-181           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a128.gif

L11a128

L11a130.gif

L11a130