From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a144 at Knotilus!

Link Presentations

[edit Notes on L11a144's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X14,8,15,7 X20,14,21,13 X6,19,1,20 X18,11,19,12 X12,6,13,5 X22,16,7,15 X4,18,5,17 X16,22,17,21
Gauss code {1, -2, 3, -10, 8, -6}, {4, -1, 2, -3, 7, -8, 5, -4, 9, -11, 10, -7, 6, -5, 11, -9}
A Braid Representative
A Morse Link Presentation L11a144 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u^2 v^4-5 u^2 v^3+5 u^2 v^2-2 u^2 v-2 u v^4+7 u v^3-11 u v^2+7 u v-2 u-2 v^3+5 v^2-5 v+2}{u v^2} (db)
Jones polynomial 3 q^{9/2}-\frac{4}{q^{9/2}}-6 q^{7/2}+\frac{8}{q^{7/2}}+11 q^{5/2}-\frac{13}{q^{5/2}}-15 q^{3/2}+\frac{16}{q^{3/2}}-q^{11/2}+\frac{1}{q^{11/2}}+17 \sqrt{q}-\frac{19}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a z^7+z^7 a^{-1} -a^3 z^5+3 a z^5+4 z^5 a^{-1} -z^5 a^{-3} -2 a^3 z^3+a z^3+6 z^3 a^{-1} -3 z^3 a^{-3} -3 a z+4 z a^{-1} -2 z a^{-3} +a^3 z^{-1} -a z^{-1} (db)
Kauffman polynomial -2 z^{10} a^{-2} -2 z^{10}-6 a z^9-10 z^9 a^{-1} -4 z^9 a^{-3} -10 a^2 z^8-z^8 a^{-2} -3 z^8 a^{-4} -8 z^8-11 a^3 z^7+2 a z^7+28 z^7 a^{-1} +14 z^7 a^{-3} -z^7 a^{-5} -8 a^4 z^6+13 a^2 z^6+18 z^6 a^{-2} +12 z^6 a^{-4} +27 z^6-4 a^5 z^5+15 a^3 z^5+14 a z^5-25 z^5 a^{-1} -16 z^5 a^{-3} +4 z^5 a^{-5} -a^6 z^4+7 a^4 z^4-2 a^2 z^4-22 z^4 a^{-2} -15 z^4 a^{-4} -17 z^4+2 a^5 z^3-7 a^3 z^3-8 a z^3+14 z^3 a^{-1} +9 z^3 a^{-3} -4 z^3 a^{-5} -a^4 z^2-a^2 z^2+9 z^2 a^{-2} +6 z^2 a^{-4} +3 z^2-2 a z-5 z a^{-1} -3 z a^{-3} -a^2+a^3 z^{-1} +a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
12           11
10          2 -2
8         41 3
6        72  -5
4       84   4
2      97    -2
0     108     2
-2    710      3
-4   69       -3
-6  38        5
-8 15         -4
-10 3          3
-121           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.