L11a216

From Knot Atlas
Jump to: navigation, search

L11a215.gif

L11a215

L11a217.gif

L11a217

Contents

L11a216.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a216 at Knotilus!


Link Presentations

[edit Notes on L11a216's Link Presentations]

Planar diagram presentation X8192 X12,3,13,4 X14,17,15,18 X16,5,17,6 X4,15,5,16 X18,13,19,14 X22,19,7,20 X20,9,21,10 X10,21,11,22 X2738 X6,11,1,12
Gauss code {1, -10, 2, -5, 4, -11}, {10, -1, 8, -9, 11, -2, 6, -3, 5, -4, 3, -6, 7, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a216 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{4 u^2 v^3-6 u^2 v^2+4 u^2 v-u^2+2 u v^4-8 u v^3+13 u v^2-8 u v+2 u-v^4+4 v^3-6 v^2+4 v}{u v^2} (db)
Jones polynomial -\frac{8}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{4}{q^{25/2}}+\frac{8}{q^{23/2}}-\frac{13}{q^{21/2}}+\frac{18}{q^{19/2}}-\frac{20}{q^{17/2}}+\frac{20}{q^{15/2}}-\frac{18}{q^{13/2}}+\frac{12}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} (-z)+3 a^{11} z^3+3 a^{11} z-a^{11} z^{-1} -2 a^9 z^5-2 a^9 z^3+3 a^9 z+3 a^9 z^{-1} -3 a^7 z^5-8 a^7 z^3-7 a^7 z-2 a^7 z^{-1} -a^5 z^5-2 a^5 z^3-a^5 z (db)
Kauffman polynomial a^{16} z^6-2 a^{16} z^4+a^{16} z^2+4 a^{15} z^7-10 a^{15} z^5+7 a^{15} z^3-a^{15} z+6 a^{14} z^8-13 a^{14} z^6+7 a^{14} z^4-a^{14} z^2+4 a^{13} z^9+2 a^{13} z^7-22 a^{13} z^5+18 a^{13} z^3-3 a^{13} z+a^{12} z^{10}+14 a^{12} z^8-36 a^{12} z^6+27 a^{12} z^4-8 a^{12} z^2-a^{12}+8 a^{11} z^9-3 a^{11} z^7-19 a^{11} z^5+16 a^{11} z^3-3 a^{11} z+a^{11} z^{-1} +a^{10} z^{10}+14 a^{10} z^8-29 a^{10} z^6+17 a^{10} z^4+a^{10} z^2-3 a^{10}+4 a^9 z^9+5 a^9 z^7-19 a^9 z^5+19 a^9 z^3-10 a^9 z+3 a^9 z^{-1} +6 a^8 z^8-4 a^8 z^6-5 a^8 z^4+8 a^8 z^2-3 a^8+6 a^7 z^7-11 a^7 z^5+12 a^7 z^3-8 a^7 z+2 a^7 z^{-1} +3 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-2 a^5 z^3+a^5 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          31-2
-8         5  5
-10        73  -4
-12       115   6
-14      97    -2
-16     1111     0
-18    810      2
-20   510       -5
-22  38        5
-24 15         -4
-26 3          3
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-8 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-7 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-6 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=-5 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a215.gif

L11a215

L11a217.gif

L11a217