L11a225

From Knot Atlas
Jump to: navigation, search

L11a224.gif

L11a224

L11a226.gif

L11a226

Contents

L11a225.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a225 at Knotilus!


Link Presentations

[edit Notes on L11a225's Link Presentations]

Planar diagram presentation X8192 X16,6,17,5 X18,10,19,9 X10,20,11,19 X2,11,3,12 X12,3,13,4 X4758 X20,16,21,15 X22,14,7,13 X14,22,15,21 X6,18,1,17
Gauss code {1, -5, 6, -7, 2, -11}, {7, -1, 3, -4, 5, -6, 9, -10, 8, -2, 11, -3, 4, -8, 10, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a225 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u^2 v^4-4 u^2 v^3+4 u^2 v^2-2 u^2 v-2 u v^4+8 u v^3-11 u v^2+8 u v-2 u-2 v^3+4 v^2-4 v+2}{u v^2} (db)
Jones polynomial q^{15/2}-3 q^{13/2}+7 q^{11/2}-11 q^{9/2}+15 q^{7/2}-18 q^{5/2}+17 q^{3/2}-16 \sqrt{q}+\frac{11}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-5} +3 z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^7 a^{-3} -4 z^5 a^{-3} -6 z^3 a^{-3} -4 z a^{-3} -2 a^{-3} z^{-1} -z^7 a^{-1} +a z^5-4 z^5 a^{-1} +3 a z^3-6 z^3 a^{-1} +3 a z-3 z a^{-1} +a z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -3 z^4 a^{-8} +2 z^2 a^{-8} +3 z^7 a^{-7} -8 z^5 a^{-7} +4 z^3 a^{-7} +5 z^8 a^{-6} -14 z^6 a^{-6} +13 z^4 a^{-6} -9 z^2 a^{-6} +2 a^{-6} +5 z^9 a^{-5} -13 z^7 a^{-5} +14 z^5 a^{-5} -12 z^3 a^{-5} +4 z a^{-5} - a^{-5} z^{-1} +2 z^{10} a^{-4} +4 z^8 a^{-4} -24 z^6 a^{-4} +35 z^4 a^{-4} -22 z^2 a^{-4} +5 a^{-4} +10 z^9 a^{-3} -28 z^7 a^{-3} +a^3 z^5+32 z^5 a^{-3} -2 a^3 z^3-14 z^3 a^{-3} +a^3 z+5 z a^{-3} -2 a^{-3} z^{-1} +2 z^{10} a^{-2} +5 z^8 a^{-2} +3 a^2 z^6-22 z^6 a^{-2} -5 a^2 z^4+30 z^4 a^{-2} +a^2 z^2-13 z^2 a^{-2} +3 a^{-2} +5 z^9 a^{-1} +5 a z^7-7 z^7 a^{-1} -8 a z^5+z^5 a^{-1} +4 a z^3+8 z^3 a^{-1} -4 a z-4 z a^{-1} +a z^{-1} +6 z^8-10 z^6+6 z^4-z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          2 2
12         51 -4
10        62  4
8       95   -4
6      96    3
4     89     1
2    89      -1
0   49       5
-2  37        -4
-4 15         4
-6 2          -2
-81           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a224.gif

L11a224

L11a226.gif

L11a226