L11a226

From Knot Atlas
Jump to: navigation, search

L11a225.gif

L11a225

L11a227.gif

L11a227

Contents

L11a226.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a226 at Knotilus!


Link Presentations

[edit Notes on L11a226's Link Presentations]

Planar diagram presentation X8192 X20,9,21,10 X4758 X16,5,17,6 X6,15,1,16 X22,17,7,18 X18,13,19,14 X14,21,15,22 X2,11,3,12 X12,3,13,4 X10,19,11,20
Gauss code {1, -9, 10, -3, 4, -5}, {3, -1, 2, -11, 9, -10, 7, -8, 5, -4, 6, -7, 11, -2, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a226 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{5 u^2 v^3-8 u^2 v^2+5 u^2 v-u^2+3 u v^4-11 u v^3+17 u v^2-11 u v+3 u-v^4+5 v^3-8 v^2+5 v}{u v^2} (db)
Jones polynomial -\frac{11}{q^{9/2}}+\frac{4}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{4}{q^{25/2}}+\frac{10}{q^{23/2}}-\frac{17}{q^{21/2}}+\frac{23}{q^{19/2}}-\frac{27}{q^{17/2}}+\frac{27}{q^{15/2}}-\frac{24}{q^{13/2}}+\frac{17}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -z a^{13}-a^{13} z^{-1} +4 z^3 a^{11}+6 z a^{11}+2 a^{11} z^{-1} -3 z^5 a^9-5 z^3 a^9-z a^9-4 z^5 a^7-10 z^3 a^7-7 z a^7-a^7 z^{-1} -z^5 a^5-z^3 a^5 (db)
Kauffman polynomial a^{16} z^6-2 a^{16} z^4+a^{16} z^2+4 a^{15} z^7-8 a^{15} z^5+5 a^{15} z^3-a^{15} z+8 a^{14} z^8-17 a^{14} z^6+13 a^{14} z^4-6 a^{14} z^2+2 a^{14}+8 a^{13} z^9-10 a^{13} z^7-3 a^{13} z^5+4 a^{13} z^3+a^{13} z-a^{13} z^{-1} +3 a^{12} z^{10}+16 a^{12} z^8-51 a^{12} z^6+49 a^{12} z^4-25 a^{12} z^2+5 a^{12}+18 a^{11} z^9-30 a^{11} z^7+13 a^{11} z^5-10 a^{11} z^3+9 a^{11} z-2 a^{11} z^{-1} +3 a^{10} z^{10}+21 a^{10} z^8-56 a^{10} z^6+46 a^{10} z^4-17 a^{10} z^2+3 a^{10}+10 a^9 z^9-6 a^9 z^7-9 a^9 z^5+6 a^9 z^3+13 a^8 z^8-19 a^8 z^6+9 a^8 z^4+a^8 z^2-a^8+10 a^7 z^7-16 a^7 z^5+14 a^7 z^3-7 a^7 z+a^7 z^{-1} +4 a^6 z^6-3 a^6 z^4+a^5 z^5-a^5 z^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          41-3
-8         7  7
-10        104  -6
-12       147   7
-14      1310    -3
-16     1414     0
-18    1014      4
-20   713       -6
-22  310        7
-24 17         -6
-26 3          3
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-8 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-7 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-6 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{14}
r=-5 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a225.gif

L11a225

L11a227.gif

L11a227