L11a23

From Knot Atlas
Jump to: navigation, search

L11a22.gif

L11a22

L11a24.gif

L11a24

Contents

L11a23.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a23 at Knotilus!


Link Presentations

[edit Notes on L11a23's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,11,17,12 X14,7,15,8 X8,15,9,16 X20,13,21,14 X22,17,5,18 X18,21,19,22 X12,19,13,20 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 3, -9, 6, -4, 5, -3, 7, -8, 9, -6, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a23 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(2)^5+4 t(1) t(2)^4-6 t(2)^4-9 t(1) t(2)^3+10 t(2)^3+10 t(1) t(2)^2-9 t(2)^2-6 t(1) t(2)+4 t(2)+2 t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\frac{8}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{3}{q^{25/2}}+\frac{8}{q^{23/2}}-\frac{13}{q^{21/2}}+\frac{17}{q^{19/2}}-\frac{20}{q^{17/2}}+\frac{20}{q^{15/2}}-\frac{18}{q^{13/2}}+\frac{12}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} (-z)-a^{13} z^{-1} +3 a^{11} z^3+4 a^{11} z+a^{11} z^{-1} -2 a^9 z^5-2 a^9 z^3+3 a^9 z+2 a^9 z^{-1} -3 a^7 z^5-8 a^7 z^3-7 a^7 z-2 a^7 z^{-1} -a^5 z^5-2 a^5 z^3-a^5 z (db)
Kauffman polynomial -z^6 a^{16}+3 z^4 a^{16}-3 z^2 a^{16}+a^{16}-3 z^7 a^{15}+7 z^5 a^{15}-5 z^3 a^{15}+z a^{15}-5 z^8 a^{14}+10 z^6 a^{14}-5 z^4 a^{14}+z^2 a^{14}-4 z^9 a^{13}+z^7 a^{13}+11 z^5 a^{13}-6 z^3 a^{13}-z a^{13}+a^{13} z^{-1} -z^{10} a^{12}-13 z^8 a^{12}+34 z^6 a^{12}-29 z^4 a^{12}+14 z^2 a^{12}-3 a^{12}-8 z^9 a^{11}+5 z^7 a^{11}+11 z^5 a^{11}-5 z^3 a^{11}-3 z a^{11}+a^{11} z^{-1} -z^{10} a^{10}-14 z^8 a^{10}+30 z^6 a^{10}-20 z^4 a^{10}+3 z^2 a^{10}-4 z^9 a^9-5 z^7 a^9+19 z^5 a^9-18 z^3 a^9+8 z a^9-2 a^9 z^{-1} -6 z^8 a^8+4 z^6 a^8+5 z^4 a^8-8 z^2 a^8+3 a^8-6 z^7 a^7+11 z^5 a^7-12 z^3 a^7+8 z a^7-2 a^7 z^{-1} -3 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+2 z^3 a^5-z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          31-2
-8         5  5
-10        73  -4
-12       115   6
-14      108    -2
-16     1010     0
-18    710      3
-20   610       -4
-22  27        5
-24 16         -5
-26 2          2
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-8 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-7 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-6 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-5 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a22.gif

L11a22

L11a24.gif

L11a24