L11a251

From Knot Atlas
Jump to: navigation, search

L11a250.gif

L11a250

L11a252.gif

L11a252

Contents

L11a251.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a251 at Knotilus!


Link Presentations

[edit Notes on L11a251's Link Presentations]

Planar diagram presentation X10,1,11,2 X20,15,21,16 X14,6,15,5 X12,4,13,3 X4,14,5,13 X2,19,3,20 X16,7,17,8 X8,9,1,10 X18,12,19,11 X22,18,9,17 X6,22,7,21
Gauss code {1, -6, 4, -5, 3, -11, 7, -8}, {8, -1, 9, -4, 5, -3, 2, -7, 10, -9, 6, -2, 11, -10}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a251 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1)^3 (u v+1)^2}{u^{3/2} v^{5/2}} (db)
Jones polynomial -q^{13/2}+4 q^{11/2}-8 q^{9/2}+13 q^{7/2}-18 q^{5/2}+20 q^{3/2}-21 \sqrt{q}+\frac{17}{\sqrt{q}}-\frac{13}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-3} -4 z^5 a^{-3} -4 z^3 a^{-3} +z^9 a^{-1} -a z^7+6 z^7 a^{-1} -4 a z^5+12 z^5 a^{-1} -4 a z^3+8 z^3 a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -3 z^{10} a^{-2} -3 z^{10}-7 a z^9-14 z^9 a^{-1} -7 z^9 a^{-3} -7 a^2 z^8-4 z^8 a^{-2} -8 z^8 a^{-4} -3 z^8-4 a^3 z^7+18 a z^7+41 z^7 a^{-1} +12 z^7 a^{-3} -7 z^7 a^{-5} -a^4 z^6+19 a^2 z^6+20 z^6 a^{-2} +12 z^6 a^{-4} -4 z^6 a^{-6} +24 z^6+10 a^3 z^5-15 a z^5-48 z^5 a^{-1} -11 z^5 a^{-3} +11 z^5 a^{-5} -z^5 a^{-7} +2 a^4 z^4-13 a^2 z^4-23 z^4 a^{-2} -4 z^4 a^{-4} +6 z^4 a^{-6} -28 z^4-4 a^3 z^3+6 a z^3+19 z^3 a^{-1} +5 z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} +3 a^2 z^2+6 z^2 a^{-2} -z^2 a^{-6} +8 z^2+1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         51 4
8        83  -5
6       105   5
4      108    -2
2     1110     1
0    812      4
-2   59       -4
-4  38        5
-6 15         -4
-8 3          3
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a250.gif

L11a250

L11a252.gif

L11a252