From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a283 at Knotilus!

Link Presentations

[edit Notes on L11a283's Link Presentations]

Planar diagram presentation X10,1,11,2 X20,11,21,12 X8,9,1,10 X22,17,9,18 X12,4,13,3 X18,8,19,7 X6,14,7,13 X14,6,15,5 X4,16,5,15 X16,21,17,22 X2,20,3,19
Gauss code {1, -11, 5, -9, 8, -7, 6, -3}, {3, -1, 2, -5, 7, -8, 9, -10, 4, -6, 11, -2, 10, -4}
A Braid Representative
A Morse Link Presentation L11a283 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1)^2 t(2)^5-t(1) t(2)^5+t(1)^3 t(2)^4-4 t(1)^2 t(2)^4+5 t(1) t(2)^4-t(2)^4-2 t(1)^3 t(2)^3+7 t(1)^2 t(2)^3-7 t(1) t(2)^3+2 t(2)^3+2 t(1)^3 t(2)^2-7 t(1)^2 t(2)^2+7 t(1) t(2)^2-2 t(2)^2-t(1)^3 t(2)+5 t(1)^2 t(2)-4 t(1) t(2)+t(2)-t(1)^2+t(1)}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial 3 q^{9/2}-\frac{4}{q^{9/2}}-7 q^{7/2}+\frac{9}{q^{7/2}}+11 q^{5/2}-\frac{14}{q^{5/2}}-17 q^{3/2}+\frac{18}{q^{3/2}}-q^{11/2}+\frac{1}{q^{11/2}}+19 \sqrt{q}-\frac{20}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a z^7+z^7 a^{-1} -a^3 z^5+3 a z^5+4 z^5 a^{-1} -z^5 a^{-3} -2 a^3 z^3+2 a z^3+7 z^3 a^{-1} -3 z^3 a^{-3} -a^3 z-a z+7 z a^{-1} -3 z a^{-3} -a z^{-1} +3 a^{-1} z^{-1} -2 a^{-3} z^{-1} (db)
Kauffman polynomial a^6 z^4+z^7 a^{-5} +4 a^5 z^5-4 z^5 a^{-5} -a^5 z^3+5 z^3 a^{-5} -2 z a^{-5} +3 z^8 a^{-4} +9 a^4 z^6-11 z^6 a^{-4} -8 a^4 z^4+12 z^4 a^{-4} +3 a^4 z^2-3 z^2 a^{-4} +4 z^9 a^{-3} +13 a^3 z^7-12 z^7 a^{-3} -18 a^3 z^5+10 z^5 a^{-3} +9 a^3 z^3-4 z^3 a^{-3} -a^3 z+5 z a^{-3} -2 a^{-3} z^{-1} +2 z^{10} a^{-2} +12 a^2 z^8+3 z^8 a^{-2} -16 a^2 z^6-23 z^6 a^{-2} +4 a^2 z^4+26 z^4 a^{-2} -a^2 z^2-11 z^2 a^{-2} +a^2+3 a^{-2} +7 a z^9+11 z^9 a^{-1} -2 a z^7-28 z^7 a^{-1} -14 a z^5+22 z^5 a^{-1} +4 a z^3-15 z^3 a^{-1} +2 a z+10 z a^{-1} -a z^{-1} -3 a^{-1} z^{-1} +2 z^{10}+12 z^8-37 z^6+27 z^4-12 z^2+3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
12           11
10          2 -2
8         51 4
6        73  -4
4       104   6
2      97    -2
0     1110     1
-2    810      2
-4   610       -4
-6  38        5
-8 16         -5
-10 3          3
-121           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.