L11a288

From Knot Atlas
Jump to: navigation, search

L11a287.gif

L11a287

L11a289.gif

L11a289

Contents

L11a288.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a288 at Knotilus!


Link Presentations

[edit Notes on L11a288's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X16,9,17,10 X20,12,21,11 X22,15,9,16 X14,6,15,5 X4,14,5,13 X6,20,7,19 X18,8,19,7 X8,18,1,17 X2,21,3,22
Gauss code {1, -11, 2, -7, 6, -8, 9, -10}, {3, -1, 4, -2, 7, -6, 5, -3, 10, -9, 8, -4, 11, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a288 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u+v) \left(u v^2-u v+u+v-1\right) \left(u v^2-u v-v^2+v-1\right)}{u^{3/2} v^{5/2}} (db)
Jones polynomial q^{15/2}-3 q^{13/2}+6 q^{11/2}-11 q^{9/2}+13 q^{7/2}-16 q^{5/2}+16 q^{3/2}-14 \sqrt{q}+\frac{10}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-5} +3 z^3 a^{-5} +2 z a^{-5} - a^{-5} z^{-1} -z^7 a^{-3} -4 z^5 a^{-3} -5 z^3 a^{-3} -z a^{-3} + a^{-3} z^{-1} -z^7 a^{-1} +a z^5-4 z^5 a^{-1} +3 a z^3-5 z^3 a^{-1} +2 a z-z a^{-1} (db)
Kauffman polynomial -2 z^{10} a^{-2} -2 z^{10} a^{-4} -5 z^9 a^{-1} -9 z^9 a^{-3} -4 z^9 a^{-5} -2 z^8 a^{-2} -4 z^8 a^{-6} -6 z^8-5 a z^7+12 z^7 a^{-1} +29 z^7 a^{-3} +9 z^7 a^{-5} -3 z^7 a^{-7} -3 a^2 z^6+16 z^6 a^{-2} +8 z^6 a^{-4} +9 z^6 a^{-6} -z^6 a^{-8} +15 z^6-a^3 z^5+11 a z^5-13 z^5 a^{-1} -40 z^5 a^{-3} -6 z^5 a^{-5} +9 z^5 a^{-7} +6 a^2 z^4-26 z^4 a^{-2} -9 z^4 a^{-4} -2 z^4 a^{-6} +3 z^4 a^{-8} -16 z^4+2 a^3 z^3-7 a z^3+2 z^3 a^{-1} +21 z^3 a^{-3} +3 z^3 a^{-5} -7 z^3 a^{-7} -a^2 z^2+9 z^2 a^{-2} +3 z^2 a^{-4} -z^2 a^{-6} -2 z^2 a^{-8} +6 z^2+2 a z-z a^{-1} -2 z a^{-3} +3 z a^{-5} +2 z a^{-7} + a^{-4} - a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          2 2
12         41 -3
10        72  5
8       75   -2
6      96    3
4     77     0
2    79      -2
0   48       4
-2  26        -4
-4 14         3
-6 2          -2
-81           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a287.gif

L11a287

L11a289.gif

L11a289