L11a29

From Knot Atlas
Jump to: navigation, search

L11a28.gif

L11a28

L11a30.gif

L11a30

Contents

L11a29.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a29 at Knotilus!


Link Presentations

[edit Notes on L11a29's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X20,10,21,9 X18,14,19,13 X14,8,15,7 X8,18,9,17 X12,20,13,19 X22,16,5,15 X16,22,17,21 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {10, -1, 5, -6, 3, -2, 11, -7, 4, -5, 8, -9, 6, -4, 7, -3, 9, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a29 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(5 t(2)^2-8 t(2)+5\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial 22 q^{9/2}-21 q^{7/2}+14 q^{5/2}-8 q^{3/2}+q^{21/2}-4 q^{19/2}+10 q^{17/2}-15 q^{15/2}+21 q^{13/2}-24 q^{11/2}+3 \sqrt{q}-\frac{1}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-9} + a^{-9} z^{-1} -z^5 a^{-7} +z^3 a^{-7} +z a^{-7} - a^{-7} z^{-1} -3 z^5 a^{-5} -6 z^3 a^{-5} -5 z a^{-5} -2 a^{-5} z^{-1} -z^5 a^{-3} +z^3 a^{-3} +3 z a^{-3} +2 a^{-3} z^{-1} +z^3 a^{-1} +z a^{-1} (db)
Kauffman polynomial -2 z^{10} a^{-6} -2 z^{10} a^{-8} -6 z^9 a^{-5} -13 z^9 a^{-7} -7 z^9 a^{-9} -8 z^8 a^{-4} -16 z^8 a^{-6} -16 z^8 a^{-8} -8 z^8 a^{-10} -6 z^7 a^{-3} -2 z^7 a^{-5} +17 z^7 a^{-7} +9 z^7 a^{-9} -4 z^7 a^{-11} -3 z^6 a^{-2} +11 z^6 a^{-4} +42 z^6 a^{-6} +48 z^6 a^{-8} +19 z^6 a^{-10} -z^6 a^{-12} -z^5 a^{-1} +9 z^5 a^{-3} +23 z^5 a^{-5} +8 z^5 a^{-7} +3 z^5 a^{-9} +8 z^5 a^{-11} +4 z^4 a^{-2} -7 z^4 a^{-4} -37 z^4 a^{-6} -44 z^4 a^{-8} -16 z^4 a^{-10} +2 z^4 a^{-12} +2 z^3 a^{-1} -9 z^3 a^{-3} -31 z^3 a^{-5} -19 z^3 a^{-7} -3 z^3 a^{-9} -4 z^3 a^{-11} -z^2 a^{-2} -2 z^2 a^{-4} +14 z^2 a^{-6} +25 z^2 a^{-8} +9 z^2 a^{-10} -z^2 a^{-12} -z a^{-1} +7 z a^{-3} +15 z a^{-5} +9 z a^{-7} +2 z a^{-9} +2 a^{-4} -4 a^{-6} -9 a^{-8} -4 a^{-10} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-7} z^{-1} + a^{-9} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
22           1-1
20          3 3
18         71 -6
16        83  5
14       137   -6
12      118    3
10     1113     2
8    1011      -1
6   411       7
4  410        -6
2 16         5
0 2          -2
-21           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=4 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a28.gif

L11a28

L11a30.gif

L11a30