L11a295

From Knot Atlas
Jump to: navigation, search

L11a294.gif

L11a294

L11a296.gif

L11a296

Contents

L11a295.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a295 at Knotilus!


Link Presentations

[edit Notes on L11a295's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X22,20,9,19 X18,7,19,8 X6,15,7,16 X16,5,17,6 X4,17,5,18 X14,22,15,21 X20,14,21,13 X2,9,3,10 X8,11,1,12
Gauss code {1, -10, 2, -7, 6, -5, 4, -11}, {10, -1, 11, -2, 9, -8, 5, -6, 7, -4, 3, -9, 8, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a295 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u+v) \left(u^2 v^3-2 u^2 v^2+2 u^2 v+u v^4-4 u v^3+6 u v^2-4 u v+u+2 v^3-2 v^2+v\right)}{u^{3/2} v^{5/2}} (db)
Jones polynomial q^{5/2}-4 q^{3/2}+8 \sqrt{q}-\frac{12}{\sqrt{q}}+\frac{15}{q^{3/2}}-\frac{17}{q^{5/2}}+\frac{16}{q^{7/2}}-\frac{13}{q^{9/2}}+\frac{9}{q^{11/2}}-\frac{6}{q^{13/2}}+\frac{2}{q^{15/2}}-\frac{1}{q^{17/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^7+2 z a^7+2 a^7 z^{-1} -z^5 a^5-2 z^3 a^5-4 z a^5-3 a^5 z^{-1} -2 z^5 a^3-4 z^3 a^3-3 z a^3+a^3 z^{-1} -z^5 a+z a+z^3 a^{-1} (db)
Kauffman polynomial -a^6 z^{10}-a^4 z^{10}-3 a^7 z^9-7 a^5 z^9-4 a^3 z^9-2 a^8 z^8-5 a^6 z^8-11 a^4 z^8-8 a^2 z^8-a^9 z^7+11 a^7 z^7+17 a^5 z^7-5 a^3 z^7-10 a z^7+7 a^8 z^6+25 a^6 z^6+33 a^4 z^6+7 a^2 z^6-8 z^6+5 a^9 z^5-16 a^7 z^5-15 a^5 z^5+23 a^3 z^5+13 a z^5-4 z^5 a^{-1} -6 a^8 z^4-30 a^6 z^4-30 a^4 z^4+3 a^2 z^4-z^4 a^{-2} +8 z^4-8 a^9 z^3+16 a^7 z^3+18 a^5 z^3-14 a^3 z^3-6 a z^3+2 z^3 a^{-1} +14 a^6 z^2+15 a^4 z^2-a^2 z^2-2 z^2+4 a^9 z-10 a^7 z-14 a^5 z+a^3 z+a z-3 a^6-3 a^4-a^2+2 a^7 z^{-1} +3 a^5 z^{-1} +a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
6           1-1
4          3 3
2         51 -4
0        73  4
-2       96   -3
-4      86    2
-6     89     1
-8    58      -3
-10   48       4
-12  25        -3
-14  4         4
-1612          -1
-181           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a294.gif

L11a294

L11a296.gif

L11a296