L11a306

From Knot Atlas
Jump to: navigation, search

L11a305.gif

L11a305

L11a307.gif

L11a307

Contents

L11a306.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a306 at Knotilus!


Link Presentations

[edit Notes on L11a306's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X16,5,17,6 X22,17,9,18 X18,13,19,14 X14,21,15,22 X20,7,21,8 X6,15,7,16 X8,19,1,20
Gauss code {1, -2, 3, -4, 5, -10, 9, -11}, {4, -1, 2, -3, 7, -8, 10, -5, 6, -7, 11, -9, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a306 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1) t(2)^5-3 t(1)^2 t(2)^4+4 t(1) t(2)^4-t(2)^4-3 t(1)^3 t(2)^3+7 t(1)^2 t(2)^3-8 t(1) t(2)^3+3 t(2)^3+3 t(1)^3 t(2)^2-8 t(1)^2 t(2)^2+7 t(1) t(2)^2-3 t(2)^2-t(1)^3 t(2)+4 t(1)^2 t(2)-3 t(1) t(2)-t(1)^2}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial -\frac{7}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{4}{q^{25/2}}+\frac{8}{q^{23/2}}-\frac{13}{q^{21/2}}+\frac{17}{q^{19/2}}-\frac{19}{q^{17/2}}+\frac{19}{q^{15/2}}-\frac{17}{q^{13/2}}+\frac{11}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} (-z)-a^{13} z^{-1} +4 a^{11} z^3+8 a^{11} z+3 a^{11} z^{-1} -3 a^9 z^5-8 a^9 z^3-6 a^9 z-2 a^9 z^{-1} -3 a^7 z^5-8 a^7 z^3-5 a^7 z-a^5 z^5-2 a^5 z^3 (db)
Kauffman polynomial a^{16} z^6-2 a^{16} z^4+a^{16} z^2+4 a^{15} z^7-10 a^{15} z^5+6 a^{15} z^3+6 a^{14} z^8-13 a^{14} z^6+5 a^{14} z^4-a^{14} z^2+a^{14}+5 a^{13} z^9-6 a^{13} z^7-5 a^{13} z^5+2 a^{13} z^3+a^{13} z-a^{13} z^{-1} +2 a^{12} z^{10}+7 a^{12} z^8-27 a^{12} z^6+30 a^{12} z^4-19 a^{12} z^2+3 a^{12}+11 a^{11} z^9-28 a^{11} z^7+34 a^{11} z^5-27 a^{11} z^3+14 a^{11} z-3 a^{11} z^{-1} +2 a^{10} z^{10}+8 a^{10} z^8-31 a^{10} z^6+42 a^{10} z^4-20 a^{10} z^2+3 a^{10}+6 a^9 z^9-12 a^9 z^7+14 a^9 z^5-8 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +7 a^8 z^8-15 a^8 z^6+14 a^8 z^4-3 a^8 z^2+6 a^7 z^7-14 a^7 z^5+13 a^7 z^3-5 a^7 z+3 a^6 z^6-5 a^6 z^4+a^5 z^5-2 a^5 z^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          31-2
-8         4  4
-10        73  -4
-12       104   6
-14      97    -2
-16     1010     0
-18    79      2
-20   610       -4
-22  38        5
-24 15         -4
-26 3          3
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-8 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-7 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-6 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-5 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a305.gif

L11a305

L11a307.gif

L11a307