L11a31

From Knot Atlas
Jump to: navigation, search

L11a30.gif

L11a30

L11a32.gif

L11a32

Contents

L11a31.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a31 at Knotilus!


Link Presentations

[edit Notes on L11a31's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,8,17,7 X22,18,5,17 X18,12,19,11 X20,14,21,13 X12,20,13,19 X14,22,15,21 X8,16,9,15 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, 5, -7, 6, -8, 9, -3, 4, -5, 7, -6, 8, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a31 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^5-3 t(2)^5-4 t(1) t(2)^4+5 t(2)^4+5 t(1) t(2)^3-5 t(2)^3-5 t(1) t(2)^2+5 t(2)^2+5 t(1) t(2)-4 t(2)-3 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{17/2}-3 q^{15/2}+7 q^{13/2}-10 q^{11/2}+13 q^{9/2}-15 q^{7/2}+14 q^{5/2}-12 q^{3/2}+8 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{1}{q^{5/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-7} +2 z a^{-7} -2 z^5 a^{-5} -5 z^3 a^{-5} +2 a^{-5} z^{-1} +z^7 a^{-3} +3 z^5 a^{-3} -5 z a^{-3} -4 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-6 z^3 a^{-1} +3 a z-2 z a^{-1} +a z^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-2} -z^{10} a^{-4} -3 z^9 a^{-1} -7 z^9 a^{-3} -4 z^9 a^{-5} -5 z^8 a^{-2} -9 z^8 a^{-4} -6 z^8 a^{-6} -2 z^8-a z^7+11 z^7 a^{-1} +22 z^7 a^{-3} +3 z^7 a^{-5} -7 z^7 a^{-7} +30 z^6 a^{-2} +35 z^6 a^{-4} +6 z^6 a^{-6} -6 z^6 a^{-8} +7 z^6+5 a z^5-13 z^5 a^{-1} -27 z^5 a^{-3} +3 z^5 a^{-5} +9 z^5 a^{-7} -3 z^5 a^{-9} -42 z^4 a^{-2} -44 z^4 a^{-4} +2 z^4 a^{-6} +8 z^4 a^{-8} -z^4 a^{-10} -5 z^4-8 a z^3+10 z^3 a^{-1} +27 z^3 a^{-3} +2 z^3 a^{-5} -5 z^3 a^{-7} +2 z^3 a^{-9} +23 z^2 a^{-2} +27 z^2 a^{-4} -4 z^2 a^{-6} -6 z^2 a^{-8} +z^2 a^{-10} -z^2+5 a z-6 z a^{-1} -17 z a^{-3} -5 z a^{-5} +z a^{-7} -5 a^{-2} -6 a^{-4} + a^{-6} +2 a^{-8} +1-a z^{-1} + a^{-1} z^{-1} +4 a^{-3} z^{-1} +2 a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         51 -4
12        52  3
10       85   -3
8      75    2
6     78     1
4    57      -2
2   48       4
0  24        -2
-2  4         4
-412          -1
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a30.gif

L11a30

L11a32.gif

L11a32