L11a314

From Knot Atlas
Jump to: navigation, search

L11a313.gif

L11a313

L11a315.gif

L11a315

Contents

L11a314.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a314 at Knotilus!


Link Presentations

[edit Notes on L11a314's Link Presentations]

Planar diagram presentation X10,1,11,2 X20,11,21,12 X8,21,1,22 X16,10,17,9 X14,8,15,7 X12,4,13,3 X18,6,19,5 X6,18,7,17 X4,14,5,13 X22,16,9,15 X2,20,3,19
Gauss code {1, -11, 6, -9, 7, -8, 5, -3}, {4, -1, 2, -6, 9, -5, 10, -4, 8, -7, 11, -2, 3, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a314 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^3 v^4-2 u^3 v^3+2 u^3 v^2-u^3 v+u^2 v^5-5 u^2 v^4+11 u^2 v^3-10 u^2 v^2+5 u^2 v-u^2-u v^5+5 u v^4-10 u v^3+11 u v^2-5 u v+u-v^4+2 v^3-2 v^2+v}{u^{3/2} v^{5/2}} (db)
Jones polynomial 25 q^{9/2}-26 q^{7/2}+21 q^{5/2}-16 q^{3/2}+\frac{1}{q^{3/2}}-q^{19/2}+4 q^{17/2}-10 q^{15/2}+17 q^{13/2}-22 q^{11/2}+9 \sqrt{q}-\frac{4}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-3} +z^7 a^{-5} -z^5 a^{-1} +3 z^5 a^{-3} +3 z^5 a^{-5} -z^5 a^{-7} -2 z^3 a^{-1} +4 z^3 a^{-3} +4 z^3 a^{-5} -2 z^3 a^{-7} -z a^{-1} +3 z a^{-3} +2 z a^{-5} -2 z a^{-7} + a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial -3 z^{10} a^{-4} -3 z^{10} a^{-6} -7 z^9 a^{-3} -16 z^9 a^{-5} -9 z^9 a^{-7} -7 z^8 a^{-2} -10 z^8 a^{-4} -15 z^8 a^{-6} -12 z^8 a^{-8} -4 z^7 a^{-1} +9 z^7 a^{-3} +28 z^7 a^{-5} +6 z^7 a^{-7} -9 z^7 a^{-9} +14 z^6 a^{-2} +30 z^6 a^{-4} +38 z^6 a^{-6} +19 z^6 a^{-8} -4 z^6 a^{-10} -z^6+9 z^5 a^{-1} +2 z^5 a^{-3} -14 z^5 a^{-5} +7 z^5 a^{-7} +13 z^5 a^{-9} -z^5 a^{-11} -7 z^4 a^{-2} -19 z^4 a^{-4} -27 z^4 a^{-6} -13 z^4 a^{-8} +4 z^4 a^{-10} +2 z^4-6 z^3 a^{-1} -4 z^3 a^{-3} +5 z^3 a^{-5} -6 z^3 a^{-7} -8 z^3 a^{-9} +z^3 a^{-11} +3 z^2 a^{-4} +8 z^2 a^{-6} +5 z^2 a^{-8} -z^2 a^{-10} -z^2+z a^{-1} +2 z a^{-3} -z a^{-5} +2 z a^{-9} + a^{-4} - a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
20           11
18          3 -3
16         71 6
14        103  -7
12       127   5
10      1411    -3
8     1211     1
6    914      5
4   712       -5
2  310        7
0 16         -5
-2 3          3
-41           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=3 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a313.gif

L11a313

L11a315.gif

L11a315