# L11a314

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a314 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{u^3 v^4-2 u^3 v^3+2 u^3 v^2-u^3 v+u^2 v^5-5 u^2 v^4+11 u^2 v^3-10 u^2 v^2+5 u^2 v-u^2-u v^5+5 u v^4-10 u v^3+11 u v^2-5 u v+u-v^4+2 v^3-2 v^2+v}{u^{3/2} v^{5/2}}$ (db) Jones polynomial $25 q^{9/2}-26 q^{7/2}+21 q^{5/2}-16 q^{3/2}+\frac{1}{q^{3/2}}-q^{19/2}+4 q^{17/2}-10 q^{15/2}+17 q^{13/2}-22 q^{11/2}+9 \sqrt{q}-\frac{4}{\sqrt{q}}$ (db) Signature 3 (db) HOMFLY-PT polynomial $z^7 a^{-3} +z^7 a^{-5} -z^5 a^{-1} +3 z^5 a^{-3} +3 z^5 a^{-5} -z^5 a^{-7} -2 z^3 a^{-1} +4 z^3 a^{-3} +4 z^3 a^{-5} -2 z^3 a^{-7} -z a^{-1} +3 z a^{-3} +2 z a^{-5} -2 z a^{-7} + a^{-3} z^{-1} - a^{-5} z^{-1}$ (db) Kauffman polynomial $-3 z^{10} a^{-4} -3 z^{10} a^{-6} -7 z^9 a^{-3} -16 z^9 a^{-5} -9 z^9 a^{-7} -7 z^8 a^{-2} -10 z^8 a^{-4} -15 z^8 a^{-6} -12 z^8 a^{-8} -4 z^7 a^{-1} +9 z^7 a^{-3} +28 z^7 a^{-5} +6 z^7 a^{-7} -9 z^7 a^{-9} +14 z^6 a^{-2} +30 z^6 a^{-4} +38 z^6 a^{-6} +19 z^6 a^{-8} -4 z^6 a^{-10} -z^6+9 z^5 a^{-1} +2 z^5 a^{-3} -14 z^5 a^{-5} +7 z^5 a^{-7} +13 z^5 a^{-9} -z^5 a^{-11} -7 z^4 a^{-2} -19 z^4 a^{-4} -27 z^4 a^{-6} -13 z^4 a^{-8} +4 z^4 a^{-10} +2 z^4-6 z^3 a^{-1} -4 z^3 a^{-3} +5 z^3 a^{-5} -6 z^3 a^{-7} -8 z^3 a^{-9} +z^3 a^{-11} +3 z^2 a^{-4} +8 z^2 a^{-6} +5 z^2 a^{-8} -z^2 a^{-10} -z^2+z a^{-1} +2 z a^{-3} -z a^{-5} +2 z a^{-9} + a^{-4} - a^{-3} z^{-1} - a^{-5} z^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-3-2-1012345678χ
20           11
18          3 -3
16         71 6
14        103  -7
12       127   5
10      1411    -3
8     1211     1
6    914      5
4   712       -5
2  310        7
0 16         -5
-2 3          3
-41           -1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=2$ $i=4$ $r=-3$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=0$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{7}$ $r=1$ ${\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9}$ ${\mathbb Z}^{9}$ $r=2$ ${\mathbb Z}^{14}\oplus{\mathbb Z}_2^{12}$ ${\mathbb Z}^{12}$ $r=3$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{14}$ ${\mathbb Z}^{14}$ $r=4$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{12}$ $r=5$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=6$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=7$ ${\mathbb Z}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=8$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.