# L11a344

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a344 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{t(2)^3 t(1)^3-2 t(2)^2 t(1)^3+2 t(2) t(1)^3-2 t(1)^3-4 t(2)^3 t(1)^2+6 t(2)^2 t(1)^2-6 t(2) t(1)^2+4 t(1)^2+4 t(2)^3 t(1)-6 t(2)^2 t(1)+6 t(2) t(1)-4 t(1)-2 t(2)^3+2 t(2)^2-2 t(2)+1}{t(1)^{3/2} t(2)^{3/2}}$ (db) Jones polynomial $-\frac{10}{q^{9/2}}-q^{7/2}+\frac{13}{q^{7/2}}+4 q^{5/2}-\frac{18}{q^{5/2}}-8 q^{3/2}+\frac{17}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{5}{q^{11/2}}+13 \sqrt{q}-\frac{16}{\sqrt{q}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $-z a^7-2 a^7 z^{-1} +3 z^3 a^5+9 z a^5+7 a^5 z^{-1} -3 z^5 a^3-11 z^3 a^3-15 z a^3-7 a^3 z^{-1} +z^7 a+4 z^5 a+7 z^3 a+6 z a+2 a z^{-1} -z^5 a^{-1} -2 z^3 a^{-1} -z a^{-1}$ (db) Kauffman polynomial $a^8 z^6-4 a^8 z^4+5 a^8 z^2-2 a^8+2 a^7 z^7-6 a^7 z^5+6 a^7 z^3-4 a^7 z+2 a^7 z^{-1} +2 a^6 z^8-13 a^6 z^4+18 a^6 z^2-8 a^6+2 a^5 z^9+a^5 z^7-11 a^5 z^5+17 a^5 z^3-16 a^5 z+7 a^5 z^{-1} +a^4 z^{10}+4 a^4 z^8-5 a^4 z^6-11 a^4 z^4+24 a^4 z^2-13 a^4+6 a^3 z^9-6 a^3 z^7-5 a^3 z^5+z^5 a^{-3} +15 a^3 z^3-z^3 a^{-3} -15 a^3 z+7 a^3 z^{-1} +a^2 z^{10}+9 a^2 z^8-16 a^2 z^6+4 z^6 a^{-2} +2 a^2 z^4-6 z^4 a^{-2} +13 a^2 z^2+2 z^2 a^{-2} -8 a^2+4 a z^9+2 a z^7+7 z^7 a^{-1} -12 a z^5-11 z^5 a^{-1} +9 a z^3+4 z^3 a^{-1} -4 a z-z a^{-1} +2 a z^{-1} +7 z^8-8 z^6-2 z^4+4 z^2-2$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-7-6-5-4-3-2-101234χ
8           11
6          3 -3
4         51 4
2        83  -5
0       85   3
-2      109    -1
-4     87     1
-6    510      5
-8   58       -3
-10  16        5
-12 14         -3
-14 1          1
-161           -1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $r=-7$ ${\mathbb Z}$ $r=-6$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{5}$ $r=-3$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-2$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=-1$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=0$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{8}$ $r=1$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=2$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=3$ ${\mathbb Z}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=4$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.