L11a346

From Knot Atlas
Jump to: navigation, search

L11a345.gif

L11a345

L11a347.gif

L11a347

Contents

L11a346.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a346 at Knotilus!


Link Presentations

[edit Notes on L11a346's Link Presentations]

Planar diagram presentation X12,1,13,2 X8493 X20,14,21,13 X22,17,11,18 X18,21,19,22 X6,16,7,15 X16,8,17,7 X14,20,15,19 X10,6,1,5 X4,10,5,9 X2,11,3,12
Gauss code {1, -11, 2, -10, 9, -6, 7, -2, 10, -9}, {11, -1, 3, -8, 6, -7, 4, -5, 8, -3, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a346 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2)^2 t(1)^2-4 t(2) t(1)^2+t(1)^2+t(2) t(1)+t(2)^2-4 t(2)+1\right)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial 15 q^{9/2}-17 q^{7/2}+16 q^{5/2}-\frac{1}{q^{5/2}}-14 q^{3/2}+\frac{2}{q^{3/2}}+q^{17/2}-3 q^{15/2}+7 q^{13/2}-12 q^{11/2}+10 \sqrt{q}-\frac{6}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-7} +2 z a^{-7} + a^{-7} z^{-1} -2 z^5 a^{-5} -6 z^3 a^{-5} -7 z a^{-5} -4 a^{-5} z^{-1} +z^7 a^{-3} +4 z^5 a^{-3} +8 z^3 a^{-3} +11 z a^{-3} +6 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-7 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-2} -z^{10} a^{-4} -2 z^9 a^{-1} -6 z^9 a^{-3} -4 z^9 a^{-5} -5 z^8 a^{-2} -11 z^8 a^{-4} -8 z^8 a^{-6} -2 z^8-a z^7+z^7 a^{-1} +4 z^7 a^{-3} -7 z^7 a^{-5} -9 z^7 a^{-7} +20 z^6 a^{-2} +28 z^6 a^{-4} +9 z^6 a^{-6} -6 z^6 a^{-8} +7 z^6+5 a z^5+17 z^5 a^{-1} +31 z^5 a^{-3} +37 z^5 a^{-5} +15 z^5 a^{-7} -3 z^5 a^{-9} -13 z^4 a^{-2} -10 z^4 a^{-4} +3 z^4 a^{-6} +6 z^4 a^{-8} -z^4 a^{-10} -7 z^4-9 a z^3-33 z^3 a^{-1} -48 z^3 a^{-3} -41 z^3 a^{-5} -15 z^3 a^{-7} +2 z^3 a^{-9} -z^2 a^{-2} -6 z^2 a^{-4} -9 z^2 a^{-6} -4 z^2 a^{-8} +z^2 a^{-10} +z^2+7 a z+22 z a^{-1} +29 z a^{-3} +20 z a^{-5} +6 z a^{-7} + a^{-2} +3 a^{-4} +3 a^{-6} + a^{-8} +1-2 a z^{-1} -5 a^{-1} z^{-1} -6 a^{-3} z^{-1} -4 a^{-5} z^{-1} - a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         51 -4
12        72  5
10       85   -3
8      97    2
6     78     1
4    79      -2
2   59       4
0  15        -4
-2 15         4
-4 1          -1
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a345.gif

L11a345

L11a347.gif

L11a347