L11a370

From Knot Atlas
Jump to: navigation, search

L11a369.gif

L11a369

L11a371.gif

L11a371

Contents

L11a370.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a370 at Knotilus!


Link Presentations

[edit Notes on L11a370's Link Presentations]

Planar diagram presentation X12,1,13,2 X20,8,21,7 X14,3,15,4 X6,15,7,16 X16,5,17,6 X4,17,5,18 X22,20,11,19 X18,9,19,10 X2,11,3,12 X10,13,1,14 X8,22,9,21
Gauss code {1, -9, 3, -6, 5, -4, 2, -11, 8, -10}, {9, -1, 10, -3, 4, -5, 6, -8, 7, -2, 11, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a370 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^2 t(1)^4-t(2) t(1)^4+2 t(2)^3 t(1)^3-5 t(2)^2 t(1)^3+5 t(2) t(1)^3-t(1)^3+t(2)^4 t(1)^2-5 t(2)^3 t(1)^2+9 t(2)^2 t(1)^2-5 t(2) t(1)^2+t(1)^2-t(2)^4 t(1)+5 t(2)^3 t(1)-5 t(2)^2 t(1)+2 t(2) t(1)-t(2)^3+t(2)^2}{t(1)^2 t(2)^2} (db)
Jones polynomial q^{5/2}-4 q^{3/2}+8 \sqrt{q}-\frac{12}{\sqrt{q}}+\frac{15}{q^{3/2}}-\frac{17}{q^{5/2}}+\frac{15}{q^{7/2}}-\frac{13}{q^{9/2}}+\frac{9}{q^{11/2}}-\frac{5}{q^{13/2}}+\frac{2}{q^{15/2}}-\frac{1}{q^{17/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 z^3+2 a^7 z+a^7 z^{-1} -a^5 z^5-2 a^5 z^3-3 a^5 z-a^5 z^{-1} -2 a^3 z^5-4 a^3 z^3-3 a^3 z-a z^5+z^3 a^{-1} +a z (db)
Kauffman polynomial -a^6 z^{10}-a^4 z^{10}-2 a^7 z^9-6 a^5 z^9-4 a^3 z^9-2 a^8 z^8-3 a^6 z^8-9 a^4 z^8-8 a^2 z^8-a^9 z^7+4 a^7 z^7+11 a^5 z^7-4 a^3 z^7-10 a z^7+8 a^8 z^6+15 a^6 z^6+22 a^4 z^6+7 a^2 z^6-8 z^6+5 a^9 z^5+3 a^7 z^5+a^5 z^5+20 a^3 z^5+13 a z^5-4 z^5 a^{-1} -10 a^8 z^4-14 a^6 z^4-9 a^4 z^4+4 a^2 z^4-z^4 a^{-2} +8 z^4-8 a^9 z^3-7 a^7 z^3-4 a^5 z^3-13 a^3 z^3-6 a z^3+2 z^3 a^{-1} +4 a^8 z^2+5 a^6 z^2-3 a^2 z^2-2 z^2+4 a^9 z-2 a^5 z+3 a^3 z+a z-a^6+a^7 z^{-1} +a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
6           1-1
4          3 3
2         51 -4
0        73  4
-2       96   -3
-4      86    2
-6     79     2
-8    68      -2
-10   37       4
-12  26        -4
-14 14         3
-16 1          -1
-181           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a369.gif

L11a369

L11a371.gif

L11a371