From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a376 at Knotilus!

Link Presentations

[edit Notes on L11a376's Link Presentations]

Planar diagram presentation X12,1,13,2 X14,3,15,4 X16,5,17,6 X22,7,11,8 X18,10,19,9 X20,18,21,17 X10,20,1,19 X8,11,9,12 X6,21,7,22 X4,13,5,14 X2,15,3,16
Gauss code {1, -11, 2, -10, 3, -9, 4, -8, 5, -7}, {8, -1, 10, -2, 11, -3, 6, -5, 7, -6, 9, -4}
A Braid Representative
A Morse Link Presentation L11a376 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1) \left(t(2) t(1)^2+t(2)^2 t(1)-t(2) t(1)+t(1)+t(2)\right)}{t(1)^2 t(2)^2} (db)
Jones polynomial \frac{14}{q^{9/2}}-\frac{15}{q^{7/2}}+\frac{12}{q^{5/2}}+q^{3/2}-\frac{10}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{12}{q^{11/2}}-3 \sqrt{q}+\frac{6}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial z^5 a^7+4 z^3 a^7+5 z a^7+a^7 z^{-1} -z^7 a^5-5 z^5 a^5-10 z^3 a^5-8 z a^5-a^5 z^{-1} -z^7 a^3-4 z^5 a^3-5 z^3 a^3-2 z a^3+z^5 a+3 z^3 a+2 z a (db)
Kauffman polynomial -z^5 a^{11}+3 z^3 a^{11}-2 z a^{11}-2 z^6 a^{10}+4 z^4 a^{10}-z^2 a^{10}-3 z^7 a^9+5 z^5 a^9-2 z^3 a^9+z a^9-4 z^8 a^8+10 z^6 a^8-15 z^4 a^8+9 z^2 a^8-3 z^9 a^7+5 z^7 a^7-6 z^5 a^7+3 z^3 a^7-4 z a^7+a^7 z^{-1} -z^{10} a^6-5 z^8 a^6+19 z^6 a^6-29 z^4 a^6+14 z^2 a^6-a^6-6 z^9 a^5+15 z^7 a^5-18 z^5 a^5+13 z^3 a^5-8 z a^5+a^5 z^{-1} -z^{10} a^4-5 z^8 a^4+18 z^6 a^4-18 z^4 a^4+7 z^2 a^4-3 z^9 a^3+4 z^7 a^3+3 z^5 a^3-2 z^3 a^3+z a^3-4 z^8 a^2+10 z^6 a^2-5 z^4 a^2+z^2 a^2-3 z^7 a+9 z^5 a-7 z^3 a+2 z a-z^6+3 z^4-2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
4           1-1
2          2 2
0         41 -3
-2        62  4
-4       75   -2
-6      85    3
-8     67     1
-10    68      -2
-12   36       3
-14  26        -4
-16 14         3
-18 1          -1
-201           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.