L11a378

From Knot Atlas
Jump to: navigation, search

L11a377.gif

L11a377

L11a379.gif

L11a379

Contents

L11a378.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a378 at Knotilus!


Link Presentations

[edit Notes on L11a378's Link Presentations]

Planar diagram presentation X12,1,13,2 X2,13,3,14 X14,3,15,4 X4,11,5,12 X16,8,17,7 X18,6,19,5 X22,16,11,15 X6,18,7,17 X8,22,9,21 X20,10,21,9 X10,20,1,19
Gauss code {1, -2, 3, -4, 6, -8, 5, -9, 10, -11}, {4, -1, 2, -3, 7, -5, 8, -6, 11, -10, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a378 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^2 t(1)^4-t(2) t(1)^4+2 t(2)^3 t(1)^3-4 t(2)^2 t(1)^3+3 t(2) t(1)^3-t(1)^3+t(2)^4 t(1)^2-4 t(2)^3 t(1)^2+5 t(2)^2 t(1)^2-4 t(2) t(1)^2+t(1)^2-t(2)^4 t(1)+3 t(2)^3 t(1)-4 t(2)^2 t(1)+2 t(2) t(1)-t(2)^3+t(2)^2}{t(1)^2 t(2)^2} (db)
Jones polynomial 4 q^{9/2}-\frac{1}{q^{9/2}}-8 q^{7/2}+\frac{3}{q^{7/2}}+9 q^{5/2}-\frac{6}{q^{5/2}}-12 q^{3/2}+\frac{9}{q^{3/2}}+q^{13/2}-2 q^{11/2}+12 \sqrt{q}-\frac{11}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -a z^5-2 z^5 a^{-1} -z^5 a^{-3} +a^3 z^3-a z^3-5 z^3 a^{-1} -2 z^3 a^{-3} +z^3 a^{-5} +a^3 z+a z-2 z a^{-1} -z a^{-3} +2 z a^{-5} + a^{-1} z^{-1} - a^{-3} z^{-1} (db)
Kauffman polynomial z^8 a^{-6} -6 z^6 a^{-6} +12 z^4 a^{-6} -8 z^2 a^{-6} +2 z^9 a^{-5} -11 z^7 a^{-5} +21 z^5 a^{-5} +a^5 z^3-17 z^3 a^{-5} +6 z a^{-5} +z^{10} a^{-4} -16 z^6 a^{-4} +3 a^4 z^4+31 z^4 a^{-4} -15 z^2 a^{-4} +6 z^9 a^{-3} -24 z^7 a^{-3} +6 a^3 z^5+28 z^5 a^{-3} -4 a^3 z^3-14 z^3 a^{-3} +a^3 z+8 z a^{-3} - a^{-3} z^{-1} +z^{10} a^{-2} +7 z^8 a^{-2} +9 a^2 z^6-36 z^6 a^{-2} -13 a^2 z^4+40 z^4 a^{-2} +5 a^2 z^2-13 z^2 a^{-2} + a^{-2} +4 z^9 a^{-1} +10 a z^7-3 z^7 a^{-1} -20 a z^5-19 z^5 a^{-1} +10 a z^3+18 z^3 a^{-1} -3 a z-2 z a^{-1} - a^{-1} z^{-1} +8 z^8-17 z^6+5 z^4-z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
14           1-1
12          1 1
10         31 -2
8        51  4
6       43   -1
4      85    3
2     55     0
0    67      -1
-2   46       2
-4  25        -3
-6 14         3
-8 2          -2
-101           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a377.gif

L11a377

L11a379.gif

L11a379