L11a398

From Knot Atlas
Jump to: navigation, search

L11a397.gif

L11a397

L11a399.gif

L11a399

Contents

L11a398.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a398 at Knotilus!


Link Presentations

[edit Notes on L11a398's Link Presentations]

Planar diagram presentation X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X18,10,19,9 X22,17,11,18 X20,11,21,12 X16,21,17,22 X4,15,1,16 X10,20,5,19
Gauss code {1, -4, 3, -10}, {2, -1, 5, -3, 6, -11}, {8, -2, 4, -5, 10, -9, 7, -6, 11, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11a398 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(2) t(3)^3-2 t(2) t(3)^2+2 t(3)^2+2 t(2) t(3)-2 t(3)+1\right)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial  q^{-6} -q^5-5 q^{-5} +4 q^4+10 q^{-4} -9 q^3-17 q^{-3} +17 q^2+23 q^{-2} -21 q-25 q^{-1} +27 (db)
Signature 0 (db)
HOMFLY-PT polynomial z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-6 a^2 z^4-3 z^4 a^{-2} +10 z^4+a^4 z^2-4 a^2 z^2-3 z^2 a^{-2} +6 z^2-a^4+4 a^2+ a^{-2} -4-a^4 z^{-2} +4 a^2 z^{-2} +2 a^{-2} z^{-2} -5 z^{-2} (db)
Kauffman polynomial a^6 z^6-a^6 z^4+5 a^5 z^7-10 a^5 z^5+z^5 a^{-5} +5 a^5 z^3-z^3 a^{-5} +a^5 z-a^5 z^{-1} +9 a^4 z^8-19 a^4 z^6+4 z^6 a^{-4} +12 a^4 z^4-5 z^4 a^{-4} -4 a^4 z^2+2 z^2 a^{-4} +a^4 z^{-2} +7 a^3 z^9-a^3 z^7+8 z^7 a^{-3} -25 a^3 z^5-10 z^5 a^{-3} +17 a^3 z^3+4 z^3 a^{-3} +5 a^3 z-5 a^3 z^{-1} +2 a^2 z^{10}+22 a^2 z^8+11 z^8 a^{-2} -63 a^2 z^6-17 z^6 a^{-2} +53 a^2 z^4+14 z^4 a^{-2} -18 a^2 z^2-5 z^2 a^{-2} +4 a^2 z^{-2} +2 a^{-2} z^{-2} -2 a^2-3 a^{-2} +15 a z^9+8 z^9 a^{-1} -15 a z^7-z^7 a^{-1} -19 a z^5-15 z^5 a^{-1} +17 a z^3+10 z^3 a^{-1} +9 a z+5 z a^{-1} -9 a z^{-1} -5 a^{-1} z^{-1} +2 z^{10}+24 z^8-64 z^6+59 z^4-21 z^2+5 z^{-2} -4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          3 3
7         61 -5
5        113  8
3       128   -4
1      159    6
-1     1214     2
-3    1113      -2
-5   612       6
-7  411        -7
-9 16         5
-11 4          -4
-131           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=-1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=0 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{15}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a397.gif

L11a397

L11a399.gif

L11a399