L11a400

From Knot Atlas
Jump to: navigation, search

L11a399.gif

L11a399

L11a401.gif

L11a401

Contents

L11a400.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a400 at Knotilus!


Link Presentations

[edit Notes on L11a400's Link Presentations]

Planar diagram presentation X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X18,12,19,11 X20,9,21,10 X10,19,5,20 X4,15,1,16 X22,18,11,17 X16,22,17,21
Gauss code {1, -4, 3, -9}, {2, -1, 5, -3, 7, -8}, {6, -2, 4, -5, 9, -11, 10, -6, 8, -7, 11, -10}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a400 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1)^2 (w-1)^2 \left(w^2+1\right)}{\sqrt{u} v w^2} (db)
Jones polynomial q^7-4 q^6+8 q^5-14 q^4+18 q^3-20 q^2+21 q-16+14 q^{-1} -7 q^{-2} +4 q^{-3} - q^{-4} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-5 z^2 a^{-2} +2 z^2 a^{-4} +5 z^2+a^2+4 a^{-2} - a^{-4} -4+2 a^2 z^{-2} +4 a^{-2} z^{-2} - a^{-4} z^{-2} -5 z^{-2} (db)
Kauffman polynomial 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+13 z^9 a^{-1} +8 z^9 a^{-3} +4 a^2 z^8+18 z^8 a^{-2} +13 z^8 a^{-4} +9 z^8+a^3 z^7-14 a z^7-32 z^7 a^{-1} -5 z^7 a^{-3} +12 z^7 a^{-5} -15 a^2 z^6-67 z^6 a^{-2} -24 z^6 a^{-4} +8 z^6 a^{-6} -50 z^6-3 a^3 z^5+7 a z^5+11 z^5 a^{-1} -19 z^5 a^{-3} -16 z^5 a^{-5} +4 z^5 a^{-7} +18 a^2 z^4+68 z^4 a^{-2} +18 z^4 a^{-4} -6 z^4 a^{-6} +z^4 a^{-8} +61 z^4+2 a^3 z^3+a z^3+6 z^3 a^{-1} +15 z^3 a^{-3} +6 z^3 a^{-5} -2 z^3 a^{-7} -7 a^2 z^2-24 z^2 a^{-2} -8 z^2 a^{-4} -23 z^2+5 a z+9 z a^{-1} +5 z a^{-3} +z a^{-5} -3 a^2-2 a^{-2} -4-5 a z^{-1} -9 a^{-1} z^{-1} -5 a^{-3} z^{-1} - a^{-5} z^{-1} +2 a^2 z^{-2} +4 a^{-2} z^{-2} + a^{-4} z^{-2} +5 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         51 4
9        93  -6
7       95   4
5      119    -2
3     109     1
1    813      5
-1   68       -2
-3  310        7
-5 14         -3
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a399.gif

L11a399

L11a401.gif

L11a401