L11a403

From Knot Atlas
Jump to: navigation, search

L11a402.gif

L11a402

L11a404.gif

L11a404

Contents

L11a403.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a403 at Knotilus!


Link Presentations

[edit Notes on L11a403's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,9,17,10 X14,8,15,7 X18,12,19,11 X20,15,21,16 X22,18,11,17 X10,19,5,20 X8,22,9,21 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 4, -9, 3, -8}, {5, -2, 11, -4, 6, -3, 7, -5, 8, -6, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a403 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^2 w^4-2 u v^2 w^3+2 u v^2 w^2-u v^2 w-2 u v w^4+5 u v w^3-5 u v w^2+4 u v w-u v+u w^4-3 u w^3+4 u w^2-3 u w+u-v^2 w^4+3 v^2 w^3-4 v^2 w^2+3 v^2 w-v^2+v w^4-4 v w^3+5 v w^2-5 v w+2 v+w^3-2 w^2+2 w-1}{\sqrt{u} v w^2} (db)
Jones polynomial q^7-4 q^6+9 q^5-15 q^4+20 q^3-22 q^2+23 q-18+15 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4} (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-4} +3 z^4 a^{-4} +3 z^2 a^{-4} + a^{-4} -z^8 a^{-2} -5 z^6 a^{-2} -a^2 z^4-10 z^4 a^{-2} -2 a^2 z^2-9 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -2 a^{-2} +2 z^6+7 z^4+7 z^2-2 z^{-2} +1 (db)
Kauffman polynomial 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+14 z^9 a^{-1} +9 z^9 a^{-3} +4 a^2 z^8+23 z^8 a^{-2} +15 z^8 a^{-4} +12 z^8+a^3 z^7-11 a z^7-28 z^7 a^{-1} -2 z^7 a^{-3} +14 z^7 a^{-5} -14 a^2 z^6-77 z^6 a^{-2} -25 z^6 a^{-4} +9 z^6 a^{-6} -57 z^6-3 a^3 z^5-2 a z^5-6 z^5 a^{-1} -30 z^5 a^{-3} -19 z^5 a^{-5} +4 z^5 a^{-7} +17 a^2 z^4+73 z^4 a^{-2} +15 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +67 z^4+3 a^3 z^3+13 a z^3+26 z^3 a^{-1} +27 z^3 a^{-3} +10 z^3 a^{-5} -z^3 a^{-7} -8 a^2 z^2-30 z^2 a^{-2} -7 z^2 a^{-4} +2 z^2 a^{-6} -29 z^2-a^3 z-3 a z-7 z a^{-1} -7 z a^{-3} -2 z a^{-5} +4 a^{-2} +2 a^{-4} +3-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         61 5
9        93  -6
7       116   5
5      1210    -2
3     1110     1
1    914      5
-1   69       -3
-3  310        7
-5 15         -4
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a402.gif

L11a402

L11a404.gif

L11a404