L11a406

From Knot Atlas
Jump to: navigation, search

L11a405.gif

L11a405

L11a407.gif

L11a407

Contents

L11a406.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a406 at Knotilus!


Link Presentations

[edit Notes on L11a406's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X10,13,5,14 X22,15,11,16 X14,7,15,8 X20,17,21,18 X8,20,9,19 X18,10,19,9 X16,21,17,22 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 5, -7, 8, -3}, {11, -2, 3, -5, 4, -9, 6, -8, 7, -6, 9, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a406 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u v^2 w-2 u v^2+2 u v w^2-7 u v w+4 u v-2 u w^2+4 u w-2 u+2 v^2 w^2-4 v^2 w+2 v^2-4 v w^2+7 v w-2 v+2 w^2-2 w}{\sqrt{u} v w} (db)
Jones polynomial - q^{-10} +3 q^{-9} -6 q^{-8} +10 q^{-7} -13 q^{-6} +16 q^{-5} -15 q^{-4} +15 q^{-3} -10 q^{-2} +q+7 q^{-1} -3 (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^{10}+3 a^8 z^2+2 a^8-2 a^6 z^4-a^6 z^2+a^6 z^{-2} -3 a^4 z^4-4 a^4 z^2-2 a^4 z^{-2} -4 a^4-a^2 z^4+2 a^2 z^2+a^2 z^{-2} +3 a^2+z^2 (db)
Kauffman polynomial z^7 a^{11}-4 z^5 a^{11}+5 z^3 a^{11}-2 z a^{11}+3 z^8 a^{10}-12 z^6 a^{10}+15 z^4 a^{10}-7 z^2 a^{10}+2 a^{10}+3 z^9 a^9-7 z^7 a^9-3 z^5 a^9+12 z^3 a^9-4 z a^9+z^{10} a^8+7 z^8 a^8-34 z^6 a^8+42 z^4 a^8-21 z^2 a^8+4 a^8+7 z^9 a^7-15 z^7 a^7+3 z^5 a^7+2 z^3 a^7+z^{10} a^6+10 z^8 a^6-30 z^6 a^6+23 z^4 a^6-7 z^2 a^6+a^6 z^{-2} -2 a^6+4 z^9 a^5-8 z^5 a^5-2 z^3 a^5+6 z a^5-2 a^5 z^{-1} +6 z^8 a^4-2 z^6 a^4-13 z^4 a^4+16 z^2 a^4+2 a^4 z^{-2} -7 a^4+7 z^7 a^3-7 z^5 a^3+z^3 a^3+4 z a^3-2 a^3 z^{-1} +6 z^6 a^2-8 z^4 a^2+8 z^2 a^2+a^2 z^{-2} -4 a^2+3 z^5 a-2 z^3 a+z^4-z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
3           11
1          2 -2
-1         51 4
-3        63  -3
-5       94   5
-7      88    0
-9     87     1
-11    69      3
-13   47       -3
-15  26        4
-17 14         -3
-19 2          2
-211           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-4 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a405.gif

L11a405

L11a407.gif

L11a407