# L11a410

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a410 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{t(1) t(2)^2 t(3)^4-t(2)^2 t(3)^4+t(1) t(3)^4-2 t(1) t(2) t(3)^4+t(2) t(3)^4-t(1) t(2)^2 t(3)^3+2 t(2)^2 t(3)^3-2 t(1) t(3)^3+2 t(1) t(2) t(3)^3-2 t(2) t(3)^3+t(3)^3+t(1) t(2)^2 t(3)^2-2 t(2)^2 t(3)^2+2 t(1) t(3)^2-2 t(1) t(2) t(3)^2+2 t(2) t(3)^2-t(3)^2-t(1) t(2)^2 t(3)+2 t(2)^2 t(3)-2 t(1) t(3)+2 t(1) t(2) t(3)-2 t(2) t(3)+t(3)-t(2)^2+t(1)-t(1) t(2)+2 t(2)-1}{\sqrt{t(1)} t(2) t(3)^2}$ (db) Jones polynomial $-q^9+3 q^8-6 q^7+9 q^6-12 q^5+13 q^4-12 q^3+12 q^2-7 q+6-2 q^{-1} + q^{-2}$ (db) Signature 4 (db) HOMFLY-PT polynomial $z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-17 z^2 a^{-2} +17 z^2 a^{-4} -5 z^2 a^{-6} +4 z^2-13 a^{-2} +11 a^{-4} -3 a^{-6} +5-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2}$ (db) Kauffman polynomial $z^3 a^{-11} +3 z^4 a^{-10} +6 z^5 a^{-9} -4 z^3 a^{-9} +z a^{-9} +9 z^6 a^{-8} -12 z^4 a^{-8} +3 z^2 a^{-8} +11 z^7 a^{-7} -23 z^5 a^{-7} +12 z^3 a^{-7} -4 z a^{-7} + a^{-7} z^{-1} +10 z^8 a^{-6} -26 z^6 a^{-6} +19 z^4 a^{-6} -12 z^2 a^{-6} - a^{-6} z^{-2} +5 a^{-6} +5 z^9 a^{-5} -4 z^7 a^{-5} -30 z^5 a^{-5} +43 z^3 a^{-5} -21 z a^{-5} +5 a^{-5} z^{-1} +z^{10} a^{-4} +12 z^8 a^{-4} -62 z^6 a^{-4} +87 z^4 a^{-4} -52 z^2 a^{-4} -4 a^{-4} z^{-2} +18 a^{-4} +7 z^9 a^{-3} -24 z^7 a^{-3} +9 z^5 a^{-3} +31 z^3 a^{-3} -29 z a^{-3} +9 a^{-3} z^{-1} +z^{10} a^{-2} +3 z^8 a^{-2} -33 z^6 a^{-2} +67 z^4 a^{-2} -53 z^2 a^{-2} -5 a^{-2} z^{-2} +21 a^{-2} +2 z^9 a^{-1} -9 z^7 a^{-1} +10 z^5 a^{-1} +5 z^3 a^{-1} -13 z a^{-1} +5 a^{-1} z^{-1} +z^8-6 z^6+14 z^4-16 z^2-2 z^{-2} +9$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         41 -3
13        52  3
11       74   -3
9      65    1
7     78     1
5    55      0
3   49       5
1  23        -1
-1 15         4
-3 1          -1
-51           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=3$ $i=5$ $r=-4$ ${\mathbb Z}$ $r=-3$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{2}$ $r=-1$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=0$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{5}$ $r=1$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=2$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{6}$ $r=3$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=5$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=6$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=7$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.