L11a411

From Knot Atlas
Jump to: navigation, search

L11a410.gif

L11a410

L11a412.gif

L11a412

Contents

L11a411.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a411 at Knotilus!


Link Presentations

[edit Notes on L11a411's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X22,16,11,15 X14,8,15,7 X10,12,5,11 X20,18,21,17 X8,19,9,20 X18,9,19,10 X16,22,17,21 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 4, -7, 8, -5}, {5, -2, 11, -4, 3, -9, 6, -8, 7, -6, 9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a411 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u v^2 w^2-2 u v^2 w-4 u v w^2+5 u v w-2 u v+2 u w^2-4 u w+2 u-2 v^2 w^2+4 v^2 w-2 v^2+2 v w^2-5 v w+4 v+2 w-2}{\sqrt{u} v w} (db)
Jones polynomial -q^8+3 q^7-6 q^6+10 q^5-13 q^4+15 q^3-14 q^2+13 q-8+6 q^{-1} -2 q^{-2} + q^{-3} (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2+z^2 a^{-2} +4 z^2 a^{-4} -2 z^2 a^{-6} -5 z^2+2 a^2+ a^{-2} +2 a^{-4} - a^{-6} -4+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +3 z^8 a^{-2} +7 z^8 a^{-4} +6 z^8 a^{-6} +2 z^8+2 a z^7-z^7 a^{-1} -15 z^7 a^{-3} -7 z^7 a^{-5} +5 z^7 a^{-7} +a^2 z^6-9 z^6 a^{-2} -27 z^6 a^{-4} -16 z^6 a^{-6} +3 z^6 a^{-8} -5 a z^5-2 z^5 a^{-1} +18 z^5 a^{-3} +3 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4+7 z^4 a^{-2} +41 z^4 a^{-4} +19 z^4 a^{-6} -6 z^4 a^{-8} -13 z^4+a z^3-6 z^3 a^{-1} -8 z^3 a^{-3} +8 z^3 a^{-5} +7 z^3 a^{-7} -2 z^3 a^{-9} +6 a^2 z^2-3 z^2 a^{-2} -22 z^2 a^{-4} -9 z^2 a^{-6} +z^2 a^{-8} +15 z^2+4 a z+6 z a^{-1} -4 z a^{-5} -2 z a^{-7} -4 a^2-2 a^{-2} +4 a^{-4} +2 a^{-6} -7-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         41 -3
11        62  4
9       74   -3
7      86    2
5     78     1
3    67      -1
1   49       5
-1  24        -2
-3 15         4
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a410.gif

L11a410

L11a412.gif

L11a412