L11a412

From Knot Atlas
Jump to: navigation, search

L11a411.gif

L11a411

L11a413.gif

L11a413

Contents

L11a412.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a412 at Knotilus!


Link Presentations

[edit Notes on L11a412's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,13,19,14 X22,17,11,18 X16,7,17,8 X8,22,9,21 X14,10,15,9 X20,16,21,15 X10,19,5,20 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 5, -6, 7, -9}, {11, -2, 3, -7, 8, -5, 4, -3, 9, -8, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a412 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w^3-3 u v^2 w^2+3 u v^2 w-u v^2+u v w^4-5 u v w^3+9 u v w^2-6 u v w+2 u v-u w^4+4 u w^3-5 u w^2+3 u w-u+v^2 w^4-3 v^2 w^3+5 v^2 w^2-4 v^2 w+v^2-2 v w^4+6 v w^3-9 v w^2+5 v w-v+w^4-3 w^3+3 w^2-w}{\sqrt{u} v w^2} (db)
Jones polynomial -q^2+5 q-12+20 q^{-1} -25 q^{-2} +31 q^{-3} -28 q^{-4} +25 q^{-5} -18 q^{-6} +10 q^{-7} -4 q^{-8} + q^{-9} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^8 z^2+a^8-3 a^6 z^4-5 a^6 z^2+a^6 z^{-2} -3 a^6+2 a^4 z^6+5 a^4 z^4+6 a^4 z^2-2 a^4 z^{-2} +a^4+a^2 z^6-a^2 z^2+a^2 z^{-2} +a^2-z^4 (db)
Kauffman polynomial a^{10} z^6-2 a^{10} z^4+a^{10} z^2+4 a^9 z^7-8 a^9 z^5+6 a^9 z^3-2 a^9 z+8 a^8 z^8-16 a^8 z^6+13 a^8 z^4-7 a^8 z^2+2 a^8+8 a^7 z^9-6 a^7 z^7-14 a^7 z^5+18 a^7 z^3-7 a^7 z+3 a^6 z^{10}+21 a^6 z^8-64 a^6 z^6+59 a^6 z^4-24 a^6 z^2+a^6 z^{-2} +4 a^6+20 a^5 z^9-26 a^5 z^7-13 a^5 z^5+25 a^5 z^3-7 a^5 z-2 a^5 z^{-1} +3 a^4 z^{10}+30 a^4 z^8-79 a^4 z^6+63 a^4 z^4-21 a^4 z^2+2 a^4 z^{-2} +3 a^4+12 a^3 z^9-4 a^3 z^7-22 a^3 z^5+17 a^3 z^3-3 a^3 z-2 a^3 z^{-1} +17 a^2 z^8-27 a^2 z^6+16 a^2 z^4-5 a^2 z^2+a^2 z^{-2} +12 a z^7-14 a z^5+z^5 a^{-1} +4 a z^3-a z+5 z^6-3 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          4 4
1         81 -7
-1        124  8
-3       149   -5
-5      1711    6
-7     1316     3
-9    1215      -3
-11   714       7
-13  311        -8
-15 17         6
-17 3          -3
-191           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=-3 {\mathbb Z}^{15}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=-2 {\mathbb Z}^{16}\oplus{\mathbb Z}_2^{15} {\mathbb Z}^{17}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a411.gif

L11a411

L11a413.gif

L11a413