L11a414

From Knot Atlas
Jump to: navigation, search

L11a413.gif

L11a413

L11a415.gif

L11a415

Contents

L11a414.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a414 at Knotilus!


Link Presentations

[edit Notes on L11a414's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X22,16,11,15 X20,14,21,13 X14,22,15,21 X8,18,9,17 X16,8,17,7 X18,10,19,9 X10,20,5,19 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 7, -6, 8, -9}, {11, -2, 4, -5, 3, -7, 6, -8, 9, -4, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a414 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^2 t(3)^4-2 t(2)^2 t(3)^4-t(1) t(2) t(3)^4+t(2) t(3)^4-t(1) t(2)^2 t(3)^3+2 t(2)^2 t(3)^3-t(1) t(3)^3+2 t(1) t(2) t(3)^3-2 t(2) t(3)^3+t(3)^3+t(1) t(2)^2 t(3)^2-2 t(2)^2 t(3)^2+2 t(1) t(3)^2-2 t(1) t(2) t(3)^2+2 t(2) t(3)^2-t(3)^2-t(1) t(2)^2 t(3)+t(2)^2 t(3)-2 t(1) t(3)+2 t(1) t(2) t(3)-2 t(2) t(3)+t(3)+2 t(1)-t(1) t(2)+t(2)-1}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial -q^9+3 q^8-6 q^7+9 q^6-11 q^5+12 q^4-11 q^3+10 q^2-6 q+5- q^{-1} + q^{-2} (db)
Signature 4 (db)
HOMFLY-PT polynomial z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -11 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-21 z^2 a^{-2} +18 z^2 a^{-4} -5 z^2 a^{-6} +5 z^2-17 a^{-2} +13 a^{-4} -3 a^{-6} +7-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +z^9 a^{-1} +5 z^9 a^{-3} +4 z^9 a^{-5} -z^8 a^{-2} +6 z^8 a^{-4} +8 z^8 a^{-6} +z^8-3 z^7 a^{-1} -16 z^7 a^{-3} -3 z^7 a^{-5} +10 z^7 a^{-7} -13 z^6 a^{-2} -32 z^6 a^{-4} -17 z^6 a^{-6} +9 z^6 a^{-8} -7 z^6-4 z^5 a^{-1} -z^5 a^{-3} -23 z^5 a^{-5} -20 z^5 a^{-7} +6 z^5 a^{-9} +36 z^4 a^{-2} +37 z^4 a^{-4} +3 z^4 a^{-6} -13 z^4 a^{-8} +3 z^4 a^{-10} +18 z^4+20 z^3 a^{-1} +39 z^3 a^{-3} +33 z^3 a^{-5} +9 z^3 a^{-7} -4 z^3 a^{-9} +z^3 a^{-11} -39 z^2 a^{-2} -20 z^2 a^{-4} +3 z^2 a^{-6} +5 z^2 a^{-8} -21 z^2-19 z a^{-1} -35 z a^{-3} -19 z a^{-5} -2 z a^{-7} +z a^{-9} +22 a^{-2} +13 a^{-4} - a^{-8} +11+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         41 -3
13        52  3
11       64   -2
9      65    1
7     78     1
5    34      -1
3   48       4
1  12        -1
-1  4         4
-311          0
-51           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a413.gif

L11a413

L11a415.gif

L11a415