L11a419

From Knot Atlas
Jump to: navigation, search

L11a418.gif

L11a418

L11a420.gif

L11a420

Contents

L11a419.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a419 at Knotilus!


Link Presentations

[edit Notes on L11a419's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,12,15,11 X22,16,11,15 X20,18,21,17 X16,8,17,7 X10,22,5,21 X8,19,9,20 X18,9,19,10 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 6, -8, 9, -7}, {3, -2, 11, -3, 4, -6, 5, -9, 8, -5, 7, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a419 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2+t(1) t(2)^2-3 t(1) t(3) t(2)^2+4 t(3) t(2)^2-2 t(2)^2-4 t(1) t(3)^2 t(2)+3 t(3)^2 t(2)-3 t(1) t(2)+6 t(1) t(3) t(2)-6 t(3) t(2)+4 t(2)+2 t(1) t(3)^2-t(3)^2+2 t(1)-4 t(1) t(3)+3 t(3)-2}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial -q^8+4 q^7-8 q^6+12 q^5-16 q^4+18 q^3+ q^{-3} -16 q^2-2 q^{-2} +15 q+6 q^{-1} -9 (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-6} -z^2 a^{-6} +z^6 a^{-4} +2 z^4 a^{-4} +z^2 a^{-4} - a^{-4} +z^6 a^{-2} +2 z^4 a^{-2} +a^2 z^2+3 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 a^2+4 a^{-2} -2 z^4-5 z^2-2 z^{-2} -5 (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +4 z^8 a^{-2} +9 z^8 a^{-4} +7 z^8 a^{-6} +2 z^8+2 a z^7+z^7 a^{-1} -7 z^7 a^{-3} +z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6-4 z^6 a^{-2} -18 z^6 a^{-4} -10 z^6 a^{-6} +4 z^6 a^{-8} +z^6-5 a z^5-6 z^5 a^{-1} +3 z^5 a^{-3} -9 z^5 a^{-5} -12 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4-10 z^4 a^{-2} +11 z^4 a^{-4} +4 z^4 a^{-6} -6 z^4 a^{-8} -15 z^4+2 a z^3-z^3 a^{-1} -4 z^3 a^{-3} +5 z^3 a^{-5} +5 z^3 a^{-7} -z^3 a^{-9} +6 a^2 z^2+15 z^2 a^{-2} -z^2 a^{-6} +z^2 a^{-8} +19 z^2+3 a z+5 z a^{-1} +3 z a^{-3} +z a^{-5} -4 a^2-8 a^{-2} -2 a^{-4} -9-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         51 -4
11        73  4
9       95   -4
7      97    2
5     810     2
3    78      -1
1   410       6
-1  25        -3
-3 15         4
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a418.gif

L11a418

L11a420.gif

L11a420