L11a427

From Knot Atlas
Jump to: navigation, search

L11a426.gif

L11a426

L11a428.gif

L11a428

Contents

L11a427.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a427 at Knotilus!


Link Presentations

[edit Notes on L11a427's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,5,15,6 X20,7,21,8 X8,19,9,20 X16,12,17,11 X10,13,5,14 X22,18,11,17 X18,22,19,21 X2,9,3,10 X4,16,1,15
Gauss code {1, -10, 2, -11}, {3, -1, 4, -5, 10, -7}, {6, -2, 7, -3, 11, -6, 8, -9, 5, -4, 9, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a427 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2+2 t(1) t(2)^2-4 t(1) t(3) t(2)^2+3 t(3) t(2)^2-3 t(1) t(3)^2 t(2)+4 t(3)^2 t(2)-4 t(1) t(2)+7 t(1) t(3) t(2)-7 t(3) t(2)+3 t(2)-2 t(3)^2+2 t(1)-3 t(1) t(3)+4 t(3)-2}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial -q^4+4 q^3-7 q^2+11 q-15+17 q^{-1} -16 q^{-2} +16 q^{-3} -10 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^6 z^2+a^6 z^{-2} +a^6-2 a^4 z^4-4 a^4 z^2-2 a^4 z^{-2} -4 a^4+a^2 z^6+2 a^2 z^4-z^4 a^{-2} +3 a^2 z^2+a^2 z^{-2} -z^2 a^{-2} +4 a^2+ a^{-2} +z^6+2 z^4-2 (db)
Kauffman polynomial a^8 z^4-a^8 z^2+3 a^7 z^5-2 a^7 z^3+6 a^6 z^6-8 a^6 z^4+8 a^6 z^2+a^6 z^{-2} -4 a^6+7 a^5 z^7-6 a^5 z^5-a^5 z^3+4 a^5 z-2 a^5 z^{-1} +7 a^4 z^8-6 a^4 z^6-7 a^4 z^4+12 a^4 z^2+2 a^4 z^{-2} -6 a^4+5 a^3 z^9-2 a^3 z^7+z^7 a^{-3} -12 a^3 z^5-3 z^5 a^{-3} +9 a^3 z^3+2 z^3 a^{-3} -2 a^3 z^{-1} +2 a^2 z^{10}+6 a^2 z^8+4 z^8 a^{-2} -22 a^2 z^6-15 z^6 a^{-2} +9 a^2 z^4+15 z^4 a^{-2} +5 a^2 z^2-2 z^2 a^{-2} +a^2 z^{-2} -3 a^2- a^{-2} +10 a z^9+5 z^9 a^{-1} -27 a z^7-17 z^7 a^{-1} +15 a z^5+15 z^5 a^{-1} +4 a z^3-2 z^3 a^{-1} -6 a z-2 z a^{-1} +2 z^{10}+3 z^8-25 z^6+22 z^4-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
9           1-1
7          3 3
5         41 -3
3        73  4
1       84   -4
-1      97    2
-3     910     1
-5    77      0
-7   410       6
-9  36        -3
-11  4         4
-1313          -2
-151           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a426.gif

L11a426

L11a428.gif

L11a428