L11a433

From Knot Atlas
Jump to: navigation, search

L11a432.gif

L11a432

L11a434.gif

L11a434

Contents

L11a433.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a433 at Knotilus!


Link Presentations

[edit Notes on L11a433's Link Presentations]

Planar diagram presentation X6172 X14,6,15,5 X8493 X2,16,3,15 X16,7,17,8 X18,14,19,13 X22,9,13,10 X20,11,21,12 X12,19,5,20 X10,21,11,22 X4,17,1,18
Gauss code {1, -4, 3, -11}, {2, -1, 5, -3, 7, -10, 8, -9}, {6, -2, 4, -5, 11, -6, 9, -8, 10, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a433 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(3) t(2)^2-t(2)^2+t(3)^2 t(2)-t(3) t(2)+t(2)-t(3)^2+t(3)\right)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial - q^{-7} +4 q^{-6} -6 q^{-5} +q^4+11 q^{-4} -4 q^3-14 q^{-3} +8 q^2+18 q^{-2} -12 q-17 q^{-1} +16 (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^2 a^6+a^6 z^{-2} +2 z^4 a^4+3 z^2 a^4-2 a^4 z^{-2} -a^4-z^6 a^2-2 z^4 a^2-2 z^2 a^2+a^2 z^{-2} -z^6-2 z^4-z^2+1+z^4 a^{-2} +z^2 a^{-2} (db)
Kauffman polynomial a^7 z^7-3 a^7 z^5+a^7 z^3+4 a^6 z^8-16 a^6 z^6+17 a^6 z^4-3 a^6 z^2+a^6 z^{-2} -3 a^6+5 a^5 z^9-18 a^5 z^7+17 a^5 z^5-5 a^5 z^3+4 a^5 z-2 a^5 z^{-1} +2 a^4 z^{10}+4 a^4 z^8-35 a^4 z^6+45 a^4 z^4+z^4 a^{-4} -13 a^4 z^2+2 a^4 z^{-2} -4 a^4+11 a^3 z^9-34 a^3 z^7+30 a^3 z^5+4 z^5 a^{-3} -9 a^3 z^3-2 z^3 a^{-3} +4 a^3 z-2 a^3 z^{-1} +2 a^2 z^{10}+9 a^2 z^8-38 a^2 z^6+8 z^6 a^{-2} +39 a^2 z^4-8 z^4 a^{-2} -14 a^2 z^2+2 z^2 a^{-2} +a^2 z^{-2} -a^2+6 a z^9-5 a z^7+10 z^7 a^{-1} -6 a z^5-12 z^5 a^{-1} +2 a z^3+3 z^3 a^{-1} +9 z^8-11 z^6+2 z^4-2 z^2+1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
9           11
7          3 -3
5         51 4
3        73  -4
1       95   4
-1      109    -1
-3     87     1
-5    610      4
-7   58       -3
-9  38        5
-11 13         -2
-13 3          3
-151           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a432.gif

L11a432

L11a434.gif

L11a434