L11a443

From Knot Atlas
Jump to: navigation, search

L11a442.gif

L11a442

L11a444.gif

L11a444

Contents

L11a443.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a443 at Knotilus!


Link Presentations

[edit Notes on L11a443's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X22,16,13,15 X8,18,9,17 X16,8,17,7 X18,10,19,9 X10,22,11,21 X20,12,21,11 X12,20,5,19 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 5, -4, 6, -7, 8, -9}, {11, -2, 3, -5, 4, -6, 9, -8, 7, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a443 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3 w^2-u v^3 w+u v^2 w^3-3 u v^2 w^2+3 u v^2 w-u v^2-u v w^3+3 u v w^2-4 u v w+2 u v-u w^2+2 u w-2 v^3 w^2+v^3 w-2 v^2 w^3+4 v^2 w^2-3 v^2 w+v^2+v w^3-3 v w^2+3 v w-v+w^2-w}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial -q^8+3 q^7-5 q^6+10 q^5-13 q^4+15 q^3-14 q^2+13 q-9+6 q^{-1} -2 q^{-2} + q^{-3} (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +z^6 a^{-4} +z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2-4 z^2 a^{-2} +4 z^2 a^{-4} -2 z^2 a^{-6} -4 z^2+2 a^2-5 a^{-2} +3 a^{-4} -2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial z^5 a^{-9} -2 z^3 a^{-9} +3 z^6 a^{-8} -7 z^4 a^{-8} +4 z^2 a^{-8} +4 z^7 a^{-7} -7 z^5 a^{-7} +3 z^3 a^{-7} +4 z^8 a^{-6} -5 z^6 a^{-6} +5 z^2 a^{-6} -2 a^{-6} +3 z^9 a^{-5} -3 z^7 a^{-5} +3 z^5 a^{-5} -z^3 a^{-5} +z a^{-5} +z^{10} a^{-4} +4 z^8 a^{-4} -8 z^6 a^{-4} +7 z^4 a^{-4} -4 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +5 z^9 a^{-3} -8 z^7 a^{-3} +4 z^5 a^{-3} +5 z^3 a^{-3} -8 z a^{-3} +2 a^{-3} z^{-1} +z^{10} a^{-2} +3 z^8 a^{-2} +a^2 z^6-8 z^6 a^{-2} -4 a^2 z^4+9 z^4 a^{-2} +5 a^2 z^2-14 z^2 a^{-2} -2 a^{-2} z^{-2} -2 a^2+9 a^{-2} +2 z^9 a^{-1} +2 a z^7+z^7 a^{-1} -5 a z^5-12 z^5 a^{-1} +2 a z^3+13 z^3 a^{-1} +a z-8 z a^{-1} +2 a^{-1} z^{-1} +3 z^8-7 z^6+5 z^4-4 z^2- z^{-2} +3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         31 -2
11        72  5
9       85   -3
7      75    2
5     78     1
3    67      -1
1   48       4
-1  25        -3
-3  4         4
-512          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a442.gif

L11a442

L11a444.gif

L11a444