L11a444

From Knot Atlas
Jump to: navigation, search

L11a443.gif

L11a443

L11a445.gif

L11a445

Contents

L11a444.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a444 at Knotilus!


Link Presentations

[edit Notes on L11a444's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X20,12,21,11 X16,8,17,7 X18,10,19,9 X10,20,11,19 X22,16,13,15 X12,18,5,17 X8,22,9,21 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 4, -9, 5, -6, 3, -8}, {11, -2, 7, -4, 8, -5, 6, -3, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a444 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(3)^2 t(2)^3-2 t(3)^2 t(2)^3-t(1) t(3) t(2)^3+t(3) t(2)^3+t(1) t(3)^3 t(2)^2-2 t(3)^3 t(2)^2-4 t(1) t(3)^2 t(2)^2+5 t(3)^2 t(2)^2-t(1) t(2)^2+4 t(1) t(3) t(2)^2-4 t(3) t(2)^2+t(2)^2-t(1) t(3)^3 t(2)+t(3)^3 t(2)+4 t(1) t(3)^2 t(2)-4 t(3)^2 t(2)+2 t(1) t(2)-5 t(1) t(3) t(2)+4 t(3) t(2)-t(2)-t(1) t(3)^2+t(3)^2+2 t(1) t(3)-t(3)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial -q^8+4 q^7-8 q^6+13 q^5-15 q^4+18 q^3+ q^{-3} -17 q^2-2 q^{-2} +14 q+6 q^{-1} -9 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +z^6 a^{-4} +z^4 a^{-2} +2 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2-3 z^2 a^{-2} +2 z^2 a^{-4} -z^2 a^{-6} -4 z^2+2 a^2-5 a^{-2} +3 a^{-4} -2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial z^5 a^{-9} -z^3 a^{-9} +4 z^6 a^{-8} -6 z^4 a^{-8} +2 z^2 a^{-8} +7 z^7 a^{-7} -11 z^5 a^{-7} +3 z^3 a^{-7} +7 z^8 a^{-6} -9 z^6 a^{-6} +z^4 a^{-6} +2 z^2 a^{-6} -2 a^{-6} +4 z^9 a^{-5} +z^7 a^{-5} -8 z^5 a^{-5} +3 z^3 a^{-5} +z a^{-5} +z^{10} a^{-4} +9 z^8 a^{-4} -18 z^6 a^{-4} +12 z^4 a^{-4} -5 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +6 z^9 a^{-3} -6 z^7 a^{-3} -5 z^5 a^{-3} +13 z^3 a^{-3} -8 z a^{-3} +2 a^{-3} z^{-1} +z^{10} a^{-2} +5 z^8 a^{-2} +a^2 z^6-13 z^6 a^{-2} -4 a^2 z^4+15 z^4 a^{-2} +5 a^2 z^2-15 z^2 a^{-2} -2 a^{-2} z^{-2} -2 a^2+9 a^{-2} +2 z^9 a^{-1} +2 a z^7+2 z^7 a^{-1} -5 a z^5-14 z^5 a^{-1} +2 a z^3+16 z^3 a^{-1} +a z-8 z a^{-1} +2 a^{-1} z^{-1} +3 z^8-7 z^6+6 z^4-5 z^2- z^{-2} +3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         51 -4
11        83  5
9       97   -2
7      96    3
5     89     1
3    69      -3
1   49       5
-1  25        -3
-3  4         4
-512          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a443.gif

L11a443

L11a445.gif

L11a445