L11a458

From Knot Atlas
Jump to: navigation, search

L11a457.gif

L11a457

L11a459.gif

L11a459

Contents

L11a458.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a458 at Knotilus!


Link Presentations

[edit Notes on L11a458's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X16,5,17,6 X20,9,21,10 X18,8,19,7 X22,19,13,20 X8,14,9,13 X12,15,5,16 X10,21,11,22 X2,11,3,12 X4,18,1,17
Gauss code {1, -10, 2, -11}, {3, -1, 5, -7, 4, -9, 10, -8}, {7, -2, 8, -3, 11, -5, 6, -4, 9, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a458 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^3 w^3-2 u v^3 w^2+u v^3 w-2 u v^2 w^3+7 u v^2 w^2-6 u v^2 w+u v^2+u v w^3-5 u v w^2+7 u v w-2 u v+u w^2-2 u w+u-v^3 w^3+2 v^3 w^2-v^3 w+2 v^2 w^3-7 v^2 w^2+5 v^2 w-v^2-v w^3+6 v w^2-7 v w+2 v-w^2+2 w-1}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial q^3-4 q^2+9 q-14+22 q^{-1} -24 q^{-2} +26 q^{-3} -22 q^{-4} +17 q^{-5} -11 q^{-6} +5 q^{-7} - q^{-8} (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^6 z^4-a^6 z^2+2 a^4 z^6+6 a^4 z^4+5 a^4 z^2+a^4 z^{-2} +a^4-a^2 z^8-5 a^2 z^6-10 a^2 z^4-8 a^2 z^2-2 a^2 z^{-2} -3 a^2+z^6+3 z^4+3 z^2+ z^{-2} +2 (db)
Kauffman polynomial 2 a^4 z^{10}+2 a^2 z^{10}+8 a^5 z^9+14 a^3 z^9+6 a z^9+13 a^6 z^8+22 a^4 z^8+16 a^2 z^8+7 z^8+11 a^7 z^7+3 a^5 z^7-17 a^3 z^7-5 a z^7+4 z^7 a^{-1} +5 a^8 z^6-18 a^6 z^6-53 a^4 z^6-47 a^2 z^6+z^6 a^{-2} -16 z^6+a^9 z^5-15 a^7 z^5-24 a^5 z^5-7 a^3 z^5-8 a z^5-9 z^5 a^{-1} -4 a^8 z^4+6 a^6 z^4+40 a^4 z^4+45 a^2 z^4-2 z^4 a^{-2} +13 z^4+4 a^7 z^3+13 a^5 z^3+12 a^3 z^3+8 a z^3+5 z^3 a^{-1} -a^6 z^2-14 a^4 z^2-20 a^2 z^2+z^2 a^{-2} -6 z^2-3 a^3 z-3 a z+3 a^4+5 a^2+3+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5          3 -3
3         61 5
1        83  -5
-1       146   8
-3      1311    -2
-5     1311     2
-7    913      4
-9   813       -5
-11  410        6
-13 17         -6
-15 4          4
-171           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{14}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a457.gif

L11a457

L11a459.gif

L11a459