From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a466 at Knotilus!

Link Presentations

[edit Notes on L11a466's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X14,8,5,7 X18,21,19,22 X16,9,17,10 X8,15,9,16 X20,13,21,14 X12,19,13,20 X22,17,15,18 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {6, -5, 9, -4, 8, -7, 4, -9}, {10, -1, 3, -6, 5, -2, 11, -8, 7, -3}
A Braid Representative
A Morse Link Presentation L11a466 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(3)-1) \left(2 t(2) t(3)^2-t(3)^2-4 t(2) t(3)+4 t(3)+t(2)-2\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial  q^{-9} -3 q^{-8} +7 q^{-7} -12 q^{-6} +16 q^{-5} -17 q^{-4} +19 q^{-3} -q^2-15 q^{-2} +3 q+12 q^{-1} -6 (db)
Signature -2 (db)
HOMFLY-PT polynomial z^2 a^8+a^8-2 z^4 a^6-3 z^2 a^6+a^6 z^{-2} -a^6+z^6 a^4+z^4 a^4-2 z^2 a^4-2 a^4 z^{-2} -4 a^4+z^6 a^2+3 z^4 a^2+6 z^2 a^2+a^2 z^{-2} +5 a^2-z^4-2 z^2-1 (db)
Kauffman polynomial z^6 a^{10}-3 z^4 a^{10}+3 z^2 a^{10}-a^{10}+3 z^7 a^9-8 z^5 a^9+7 z^3 a^9-2 z a^9+4 z^8 a^8-6 z^6 a^8-3 z^4 a^8+6 z^2 a^8-a^8+3 z^9 a^7+2 z^7 a^7-17 z^5 a^7+15 z^3 a^7-6 z a^7+z^{10} a^6+8 z^8 a^6-15 z^6 a^6+6 z^2 a^6+a^6 z^{-2} -3 a^6+6 z^9 a^5-z^7 a^5-15 z^5 a^5+12 z^3 a^5-z a^5-2 a^5 z^{-1} +z^{10} a^4+8 z^8 a^4-9 z^6 a^4-9 z^4 a^4+16 z^2 a^4+2 a^4 z^{-2} -8 a^4+3 z^9 a^3+4 z^7 a^3-10 z^5 a^3+3 z^3 a^3+5 z a^3-2 a^3 z^{-1} +4 z^8 a^2+2 z^6 a^2-15 z^4 a^2+18 z^2 a^2+a^2 z^{-2} -8 a^2+4 z^7 a-3 z^5 a-3 z^3 a+3 z a+3 z^6-6 z^4+5 z^2-2+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
5           1-1
3          2 2
1         41 -3
-1        82  6
-3       96   -3
-5      106    4
-7     79     2
-9    910      -1
-11   59       4
-13  27        -5
-15 15         4
-17 2          -2
-191           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=-3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.