L11a471

From Knot Atlas
Jump to: navigation, search

L11a470.gif

L11a470

L11a472.gif

L11a472

Contents

L11a471.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a471 at Knotilus!


Link Presentations

[edit Notes on L11a471's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X18,6,19,5 X8493 X20,9,21,10 X10,19,11,20 X14,18,15,17 X22,16,17,15 X16,22,5,21 X2,12,3,11
Gauss code {1, -11, 5, -3}, {8, -4, 7, -6, 10, -9}, {4, -1, 2, -5, 6, -7, 11, -2, 3, -8, 9, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a471 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(3)-1)^2 (t(2)+t(3)-1) (t(3) t(2)-t(2)-t(3))}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial q^6-4 q^5- q^{-5} +9 q^4+4 q^{-4} -14 q^3-9 q^{-3} +21 q^2+15 q^{-2} -22 q-20 q^{-1} +24 (db)
Signature 0 (db)
HOMFLY-PT polynomial z^4 a^{-4} -a^4 z^2+z^2 a^{-4} + a^{-4} z^{-2} + a^{-4} -z^6 a^{-2} +2 a^2 z^4-2 z^4 a^{-2} +a^2 z^2-4 z^2 a^{-2} -2 a^{-2} z^{-2} -a^2-4 a^{-2} -z^6+3 z^2+ z^{-2} +4 (db)
Kauffman polynomial z^6 a^{-6} -2 z^4 a^{-6} +4 z^7 a^{-5} +a^5 z^5-9 z^5 a^{-5} -a^5 z^3+4 z^3 a^{-5} +8 z^8 a^{-4} +4 a^4 z^6-22 z^6 a^{-4} -5 a^4 z^4+21 z^4 a^{-4} +2 a^4 z^2-9 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +7 z^9 a^{-3} +8 a^3 z^7-12 z^7 a^{-3} -12 a^3 z^5+2 z^5 a^{-3} +7 a^3 z^3+4 z^3 a^{-3} -a^3 z-2 z a^{-3} +2 a^{-3} z^{-1} +2 z^{10} a^{-2} +9 a^2 z^8+15 z^8 a^{-2} -10 a^2 z^6-50 z^6 a^{-2} +3 a^2 z^4+54 z^4 a^{-2} -3 a^2 z^2-27 z^2 a^{-2} -2 a^{-2} z^{-2} +2 a^2+7 a^{-2} +6 a z^9+13 z^9 a^{-1} +4 a z^7-20 z^7 a^{-1} -21 a z^5+3 z^5 a^{-1} +14 a z^3+6 z^3 a^{-1} -3 a z-4 z a^{-1} +2 a^{-1} z^{-1} +2 z^{10}+16 z^8-41 z^6+39 z^4-23 z^2- z^{-2} +7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         61 5
7        83  -5
5       136   7
3      1110    -1
1     1311     2
-1    913      4
-3   611       -5
-5  39        6
-7 16         -5
-9 3          3
-111           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{13}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{13}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a470.gif

L11a470

L11a472.gif

L11a472