L11a472

From Knot Atlas
Jump to: navigation, search

L11a471.gif

L11a471

L11a473.gif

L11a473

Contents

L11a472.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a472 at Knotilus!


Link Presentations

[edit Notes on L11a472's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X18,6,19,5 X8493 X20,9,21,10 X10,19,11,20 X22,16,17,15 X16,18,5,17 X14,22,15,21 X2,12,3,11
Gauss code {1, -11, 5, -3}, {9, -4, 7, -6, 10, -8}, {4, -1, 2, -5, 6, -7, 11, -2, 3, -10, 8, -9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a472 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (w-1)^2 \left(v^2 w^2-v^2 w-v w^2+v w-v-w+1\right)}{\sqrt{u} v w^2} (db)
Jones polynomial q^7-4 q^6+8 q^5-12 q^4- q^{-4} +17 q^3+3 q^{-3} -17 q^2-6 q^{-2} +18 q+11 q^{-1} -14 (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-9 z^4 a^{-2} +3 z^4 a^{-4} +8 z^4-3 a^2 z^2-8 z^2 a^{-2} +2 z^2 a^{-4} +9 z^2-a^2-4 a^{-2} + a^{-4} +4-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial z^4 a^{-8} +4 z^5 a^{-7} -2 z^3 a^{-7} +8 z^6 a^{-6} -8 z^4 a^{-6} +2 z^2 a^{-6} +10 z^7 a^{-5} -11 z^5 a^{-5} +z^3 a^{-5} +10 z^8 a^{-4} -15 z^6 a^{-4} +6 z^4 a^{-4} -3 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +7 z^9 a^{-3} +a^3 z^7-10 z^7 a^{-3} -4 a^3 z^5+z^5 a^{-3} +4 a^3 z^3+z^3 a^{-3} -a^3 z-2 z a^{-3} +2 a^{-3} z^{-1} +2 z^{10} a^{-2} +3 a^2 z^8+10 z^8 a^{-2} -12 a^2 z^6-43 z^6 a^{-2} +15 a^2 z^4+48 z^4 a^{-2} -9 a^2 z^2-23 z^2 a^{-2} -2 a^{-2} z^{-2} +2 a^2+7 a^{-2} +4 a z^9+11 z^9 a^{-1} -13 a z^7-34 z^7 a^{-1} +9 a z^5+29 z^5 a^{-1} +2 a z^3-4 z^3 a^{-1} -3 a z-4 z a^{-1} +2 a^{-1} z^{-1} +2 z^{10}+3 z^8-32 z^6+48 z^4-27 z^2- z^{-2} +7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         51 4
9        73  -4
7       105   5
5      99    0
3     98     1
1    711      4
-1   47       -3
-3  27        5
-5 14         -3
-7 2          2
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a471.gif

L11a471

L11a473.gif

L11a473