L11a482

From Knot Atlas
Jump to: navigation, search

L11a481.gif

L11a481

L11a483.gif

L11a483

Contents

L11a482.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a482 at Knotilus!


Link Presentations

[edit Notes on L11a482's Link Presentations]

Planar diagram presentation X6172 X2,9,3,10 X12,3,13,4 X10,5,11,6 X16,11,5,12 X4,15,1,16 X20,14,21,13 X18,7,19,8 X8,17,9,18 X22,20,17,19 X14,22,15,21
Gauss code {1, -2, 3, -6}, {9, -8, 10, -7, 11, -10}, {4, -1, 8, -9, 2, -4, 5, -3, 7, -11, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a482 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-2) (t(3)-1) (2 t(3)-1)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial -q^2+5 q-11+17 q^{-1} -20 q^{-2} +25 q^{-3} -22 q^{-4} +19 q^{-5} -13 q^{-6} +7 q^{-7} -3 q^{-8} + q^{-9} (db)
Signature -2 (db)
HOMFLY-PT polynomial z^2 a^8+a^8-2 z^4 a^6-3 z^2 a^6+a^6 z^{-2} -2 a^6+z^6 a^4+z^4 a^4+z^2 a^4-2 a^4 z^{-2} -a^4+z^6 a^2+z^4 a^2+z^2 a^2+a^2 z^{-2} +2 a^2-z^4 (db)
Kauffman polynomial z^6 a^{10}-3 z^4 a^{10}+3 z^2 a^{10}-a^{10}+3 z^7 a^9-8 z^5 a^9+7 z^3 a^9-2 z a^9+4 z^8 a^8-5 z^6 a^8-4 z^4 a^8+6 z^2 a^8-a^8+4 z^9 a^7-z^7 a^7-11 z^5 a^7+13 z^3 a^7-6 z a^7+2 z^{10} a^6+8 z^8 a^6-20 z^6 a^6+11 z^4 a^6+z^2 a^6+a^6 z^{-2} -a^6+12 z^9 a^5-17 z^7 a^5+z^5 a^5+8 z^3 a^5-2 z a^5-2 a^5 z^{-1} +2 z^{10} a^4+17 z^8 a^4-39 z^6 a^4+23 z^4 a^4-z^2 a^4+2 a^4 z^{-2} -2 a^4+8 z^9 a^3-2 z^7 a^3-12 z^5 a^3+4 z^3 a^3+2 z a^3-2 a^3 z^{-1} +13 z^8 a^2-20 z^6 a^2+7 z^4 a^2+z^2 a^2+a^2 z^{-2} -2 a^2+11 z^7 a-15 z^5 a+2 z^3 a+5 z^6-4 z^4+z^5 a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          4 4
1         71 -6
-1        104  6
-3       129   -3
-5      138    5
-7     912     3
-9    1013      -3
-11   511       6
-13  28        -6
-15 15         4
-17 2          -2
-191           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a481.gif

L11a481

L11a483.gif

L11a483