From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a494 at Knotilus!

Link Presentations

[edit Notes on L11a494's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X16,9,17,10 X8,15,9,16 X4,17,1,18 X22,12,19,11 X10,4,11,3 X20,5,21,6 X18,21,5,22 X12,20,13,19 X2,14,3,13
Gauss code {1, -11, 7, -5}, {10, -8, 9, -6}, {8, -1, 2, -4, 3, -7, 6, -10, 11, -2, 4, -3, 5, -9}
A Braid Representative
A Morse Link Presentation L11a494 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) (w-1)^3 \left(w^2+1\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial q^3-4 q^2+9 q-12+19 q^{-1} -20 q^{-2} +21 q^{-3} -17 q^{-4} +13 q^{-5} -8 q^{-6} +3 q^{-7} - q^{-8} (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^6 z^4-3 a^6 z^2-a^6 z^{-2} -3 a^6+2 a^4 z^6+8 a^4 z^4+12 a^4 z^2+4 a^4 z^{-2} +10 a^4-a^2 z^8-5 a^2 z^6-10 a^2 z^4-12 a^2 z^2-5 a^2 z^{-2} -11 a^2+z^6+3 z^4+3 z^2+2 z^{-2} +4 (db)
Kauffman polynomial a^9 z^5-2 a^9 z^3+a^9 z+3 a^8 z^6-4 a^8 z^4+a^8 z^2+6 a^7 z^7-10 a^7 z^5+8 a^7 z^3-5 a^7 z+a^7 z^{-1} +7 a^6 z^8-10 a^6 z^6+8 a^6 z^4-9 a^6 z^2-a^6 z^{-2} +5 a^6+5 a^5 z^9+a^5 z^7-20 a^5 z^5+32 a^5 z^3-22 a^5 z+5 a^5 z^{-1} +2 a^4 z^{10}+11 a^4 z^8-38 a^4 z^6+52 a^4 z^4-38 a^4 z^2-4 a^4 z^{-2} +16 a^4+12 a^3 z^9-25 a^3 z^7+8 a^3 z^5+25 a^3 z^3-26 a^3 z+9 a^3 z^{-1} +2 a^2 z^{10}+12 a^2 z^8-50 a^2 z^6+z^6 a^{-2} +65 a^2 z^4-2 z^4 a^{-2} -40 a^2 z^2-5 a^2 z^{-2} +17 a^2+7 a z^9-16 a z^7+4 z^7 a^{-1} +8 a z^5-9 z^5 a^{-1} +5 a z^3+2 z^3 a^{-1} -10 a z+5 a z^{-1} +8 z^8-24 z^6+23 z^4-12 z^2-2 z^{-2} +7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
7           11
5          3 -3
3         61 5
1        63  -3
-1       136   7
-3      1110    -1
-5     109     1
-7    711      4
-9   610       -4
-11  27        5
-13 16         -5
-15 2          2
-171           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{13}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.