L11a501

From Knot Atlas
Jump to: navigation, search

L11a500.gif

L11a500

L11a502.gif

L11a502

Contents

L11a501.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a501 at Knotilus!


Link Presentations

[edit Notes on L11a501's Link Presentations]

Planar diagram presentation X8192 X14,5,15,6 X10,3,11,4 X4,13,5,14 X2738 X6,9,1,10 X18,12,19,11 X12,18,7,17 X20,16,21,15 X22,20,13,19 X16,22,17,21
Gauss code {1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 7, -8}, {4, -2, 9, -11, 8, -7, 10, -9, 11, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a501 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v w^3-3 u^2 v w^2+3 u^2 v w-u^2 v-u^2 w^3+2 u^2 w^2-2 u^2 w+u v^2 w^3-3 u v^2 w^2+3 u v^2 w-u v^2-2 u v w^3+6 u v w^2-6 u v w+2 u v+u w^3-3 u w^2+3 u w-u+2 v^2 w^2-2 v^2 w+v^2+v w^3-3 v w^2+3 v w-v}{u v w^{3/2}} (db)
Jones polynomial -q^5+3 q^4-7 q^3+12 q^2-16 q+19-18 q^{-1} +17 q^{-2} -11 q^{-3} +8 q^{-4} -3 q^{-5} + q^{-6} (db)
Signature 0 (db)
HOMFLY-PT polynomial a^4 z^4+2 a^4 z^2-z^2 a^{-4} +2 a^4 z^{-2} +3 a^4- a^{-4} -a^2 z^6-3 a^2 z^4+2 z^4 a^{-2} -7 a^2 z^2+3 z^2 a^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} -9 a^2+ a^{-2} -z^6-z^4+2 z^2+4 z^{-2} +6 (db)
Kauffman polynomial a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +6 a^4 z^8+12 a^2 z^8+5 z^8 a^{-2} +11 z^8+3 a^5 z^7-2 a^3 z^7-2 a z^7+8 z^7 a^{-1} +5 z^7 a^{-3} +a^6 z^6-19 a^4 z^6-39 a^2 z^6-2 z^6 a^{-2} +3 z^6 a^{-4} -24 z^6-7 a^5 z^5-17 a^3 z^5-29 a z^5-27 z^5 a^{-1} -7 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+26 a^4 z^4+51 a^2 z^4-6 z^4 a^{-2} -5 z^4 a^{-4} +21 z^4+3 a^5 z^3+28 a^3 z^3+50 a z^3+31 z^3 a^{-1} +4 z^3 a^{-3} -2 z^3 a^{-5} +2 a^6 z^2-23 a^4 z^2-43 a^2 z^2+5 z^2 a^{-2} +3 z^2 a^{-4} -16 z^2-19 a^3 z-35 a z-19 z a^{-1} -2 z a^{-3} +z a^{-5} +11 a^4+22 a^2- a^{-4} +13+5 a^3 z^{-1} +9 a z^{-1} +5 a^{-1} z^{-1} + a^{-3} z^{-1} -2 a^4 z^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} -4 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          2 2
7         51 -4
5        72  5
3       95   -4
1      107    3
-1     1011     1
-3    78      -1
-5   511       6
-7  36        -3
-9  5         5
-1113          -2
-131           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a500.gif

L11a500

L11a502.gif

L11a502