L11a510

From Knot Atlas
Jump to: navigation, search

L11a509.gif

L11a509

L11a511.gif

L11a511

Contents

L11a510.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a510 at Knotilus!


Link Presentations

[edit Notes on L11a510's Link Presentations]

Planar diagram presentation X8192 X14,3,15,4 X22,16,13,15 X10,20,11,19 X18,10,19,9 X20,12,21,11 X12,22,7,21 X16,6,17,5 X2738 X4,13,5,14 X6,18,1,17
Gauss code {1, -9, 2, -10, 8, -11}, {9, -1, 5, -4, 6, -7}, {10, -2, 3, -8, 11, -5, 4, -6, 7, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a510 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^2 w^3-u^2 v^2 w^2-u^2 v w^3+2 u^2 v w^2-u^2 v w-u^2 w^2+2 u^2 w-u^2-2 u v^2 w^3+2 u v^2 w^2-u v^2 w+u v w^3-2 u v w^2+2 u v w-u v+u w^2-2 u w+2 u+v^2 w^3-2 v^2 w^2+v^2 w+v w^2-2 v w+v+w-1}{u v w^{3/2}} (db)
Jones polynomial -q^9+3 q^8-5 q^7+8 q^6-10 q^5+11 q^4-10 q^3+10 q^2+ q^{-2} -6 q-2 q^{-1} +5 (db)
Signature 4 (db)
HOMFLY-PT polynomial z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +13 z^4 a^{-4} -4 z^4 a^{-6} +z^4-15 z^2 a^{-2} +13 z^2 a^{-4} -4 z^2 a^{-6} +4 z^2-8 a^{-2} +5 a^{-4} - a^{-6} +4-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial z^3 a^{-11} +3 z^4 a^{-10} -z^2 a^{-10} +5 z^5 a^{-9} -3 z^3 a^{-9} +7 z^6 a^{-8} -9 z^4 a^{-8} +2 z^2 a^{-8} +8 z^7 a^{-7} -16 z^5 a^{-7} +7 z^3 a^{-7} -z a^{-7} +7 z^8 a^{-6} -17 z^6 a^{-6} +9 z^4 a^{-6} -4 z^2 a^{-6} + a^{-6} +4 z^9 a^{-5} -6 z^7 a^{-5} -13 z^5 a^{-5} +17 z^3 a^{-5} -3 z a^{-5} +z^{10} a^{-4} +7 z^8 a^{-4} -42 z^6 a^{-4} +59 z^4 a^{-4} -32 z^2 a^{-4} - a^{-4} z^{-2} +8 a^{-4} +6 z^9 a^{-3} -24 z^7 a^{-3} +22 z^5 a^{-3} +4 z^3 a^{-3} -8 z a^{-3} +2 a^{-3} z^{-1} +z^{10} a^{-2} +z^8 a^{-2} -24 z^6 a^{-2} +51 z^4 a^{-2} -38 z^2 a^{-2} -2 a^{-2} z^{-2} +12 a^{-2} +2 z^9 a^{-1} -10 z^7 a^{-1} +14 z^5 a^{-1} -2 z^3 a^{-1} -6 z a^{-1} +2 a^{-1} z^{-1} +z^8-6 z^6+13 z^4-13 z^2- z^{-2} +6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         31 -2
13        52  3
11       64   -2
9      54    1
7     67     1
5    44      0
3   37       4
1  23        -1
-1 14         3
-3 1          -1
-51           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a509.gif

L11a509

L11a511.gif

L11a511