From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a512 at Knotilus!

Link Presentations

[edit Notes on L11a512's Link Presentations]

Planar diagram presentation X8192 X16,5,17,6 X22,15,13,16 X14,4,15,3 X4,14,5,13 X12,17,7,18 X10,19,11,20 X18,9,19,10 X20,11,21,12 X2738 X6,21,1,22
Gauss code {1, -10, 4, -5, 2, -11}, {10, -1, 8, -7, 9, -6}, {5, -4, 3, -2, 6, -8, 7, -9, 11, -3}
A Braid Representative
A Morse Link Presentation L11a512 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^2 t(3)^3-t(2)^2 t(3)^3+t(1)^2 t(2) t(3)^3-2 t(1) t(2) t(3)^3+t(2) t(3)^3+t(1)^2 t(3)^2+t(1)^2 t(2)^2 t(3)^2-4 t(1) t(2)^2 t(3)^2+2 t(2)^2 t(3)^2-2 t(1) t(3)^2-3 t(1)^2 t(2) t(3)^2+7 t(1) t(2) t(3)^2-3 t(2) t(3)^2+t(3)^2-2 t(1)^2 t(3)-t(1)^2 t(2)^2 t(3)+2 t(1) t(2)^2 t(3)-t(2)^2 t(3)+4 t(1) t(3)+3 t(1)^2 t(2) t(3)-7 t(1) t(2) t(3)+3 t(2) t(3)-t(3)+t(1)^2-t(1)-t(1)^2 t(2)+2 t(1) t(2)-t(2)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial - q^{-11} +4 q^{-10} -8 q^{-9} +13 q^{-8} -17 q^{-7} +20 q^{-6} -18 q^{-5} +17 q^{-4} -11 q^{-3} +7 q^{-2} -3 q^{-1} +1 (db)
Signature -4 (db)
HOMFLY-PT polynomial a^{10} \left(-z^2\right)-a^{10}+3 a^8 z^4+7 a^8 z^2+a^8 z^{-2} +4 a^8-2 a^6 z^6-7 a^6 z^4-10 a^6 z^2-2 a^6 z^{-2} -8 a^6-a^4 z^6-a^4 z^4+4 a^4 z^2+a^4 z^{-2} +5 a^4+a^2 z^4+2 a^2 z^2 (db)
Kauffman polynomial a^{13} z^5-a^{13} z^3+4 a^{12} z^6-6 a^{12} z^4+2 a^{12} z^2+7 a^{11} z^7-11 a^{11} z^5+5 a^{11} z^3-a^{11} z+7 a^{10} z^8-7 a^{10} z^6-a^{10} z^4+a^{10}+4 a^9 z^9+6 a^9 z^7-23 a^9 z^5+18 a^9 z^3-3 a^9 z+a^8 z^{10}+14 a^8 z^8-36 a^8 z^6+39 a^8 z^4-24 a^8 z^2-a^8 z^{-2} +8 a^8+8 a^7 z^9-9 a^7 z^7-6 a^7 z^5+14 a^7 z^3-8 a^7 z+2 a^7 z^{-1} +a^6 z^{10}+12 a^6 z^8-40 a^6 z^6+53 a^6 z^4-37 a^6 z^2-2 a^6 z^{-2} +12 a^6+4 a^5 z^9-5 a^5 z^7-3 a^5 z^5+7 a^5 z^3-6 a^5 z+2 a^5 z^{-1} +5 a^4 z^8-14 a^4 z^6+16 a^4 z^4-13 a^4 z^2-a^4 z^{-2} +6 a^4+3 a^3 z^7-8 a^3 z^5+5 a^3 z^3+a^2 z^6-3 a^2 z^4+2 a^2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
1           11
-1          2 -2
-3         51 4
-5        73  -4
-7       104   6
-9      98    -1
-11     119     2
-13    710      3
-15   610       -4
-17  38        5
-19 15         -4
-21 3          3
-231           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=-3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.