L11a525

From Knot Atlas
Jump to: navigation, search

L11a524.gif

L11a524

L11a526.gif

L11a526

Contents

L11a525.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a525 at Knotilus!


Link Presentations

[edit Notes on L11a525's Link Presentations]

Planar diagram presentation X8192 X14,3,15,4 X12,15,7,16 X22,19,13,20 X16,9,17,10 X10,22,11,21 X20,12,21,11 X18,5,19,6 X2738 X4,13,5,14 X6,17,1,18
Gauss code {1, -9, 2, -10, 8, -11}, {9, -1, 5, -6, 7, -3}, {10, -2, 3, -5, 11, -8, 4, -7, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a525 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u^2 v^2 w+u^2 v^2-2 u^2 v w^2+5 u^2 v w-2 u^2 v+2 u^2 w^2-3 u^2 w+u^2-2 u v^2 w^2+3 u v^2 w-u v^2-u v w^3+6 u v w^2-6 u v w+u v+u w^3-3 u w^2+2 u w-v^2 w^3+3 v^2 w^2-2 v^2 w+2 v w^3-5 v w^2+2 v w-w^3+w^2}{u v w^{3/2}} (db)
Jones polynomial q-3+7 q^{-1} -12 q^{-2} +17 q^{-3} -18 q^{-4} +20 q^{-5} -16 q^{-6} +13 q^{-7} -8 q^{-8} +4 q^{-9} - q^{-10} (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^{10}+4 z^2 a^8+a^8 z^{-2} +3 a^8-3 z^4 a^6-4 z^2 a^6-2 a^6 z^{-2} -5 a^6-3 z^4 a^4-z^2 a^4+a^4 z^{-2} +2 a^4-z^4 a^2+2 z^2 a^2+a^2+z^2 (db)
Kauffman polynomial a^{11} z^7-3 a^{11} z^5+3 a^{11} z^3-a^{11} z+4 a^{10} z^8-14 a^{10} z^6+15 a^{10} z^4-6 a^{10} z^2+2 a^{10}+5 a^9 z^9-13 a^9 z^7+2 a^9 z^5+10 a^9 z^3-3 a^9 z+2 a^8 z^{10}+8 a^8 z^8-46 a^8 z^6+59 a^8 z^4-34 a^8 z^2-a^8 z^{-2} +10 a^8+12 a^7 z^9-30 a^7 z^7+12 a^7 z^5+8 a^7 z^3-8 a^7 z+2 a^7 z^{-1} +2 a^6 z^{10}+14 a^6 z^8-56 a^6 z^6+66 a^6 z^4-41 a^6 z^2-2 a^6 z^{-2} +12 a^6+7 a^5 z^9-7 a^5 z^7-9 a^5 z^5+12 a^5 z^3-6 a^5 z+2 a^5 z^{-1} +10 a^4 z^8-18 a^4 z^6+15 a^4 z^4-8 a^4 z^2-a^4 z^{-2} +4 a^4+9 a^3 z^7-13 a^3 z^5+9 a^3 z^3+6 a^2 z^6-6 a^2 z^4+4 a^2 z^2-a^2+3 a z^5-2 a z^3+z^4-z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
3           11
1          2 -2
-1         51 4
-3        83  -5
-5       94   5
-7      109    -1
-9     108     2
-11    711      4
-13   69       -3
-15  38        5
-17 15         -4
-19 3          3
-211           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a524.gif

L11a524

L11a526.gif

L11a526