L11a544

From Knot Atlas
Jump to: navigation, search

L11a543.gif

L11a543

L11a545.gif

L11a545

Contents

L11a544.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a544 at Knotilus!


Link Presentations

[edit Notes on L11a544's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X8,18,9,17 X14,8,15,7 X18,10,19,9 X10,12,5,11 X22,20,17,19 X16,22,11,21 X20,16,21,15 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 4, -3, 5, -6}, {6, -2, 11, -4, 9, -8}, {3, -5, 7, -9, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a544 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{-t(1) t(3)^2 t(2)^2+t(3)^2 t(2)^2+t(1) t(3) t(2)^2-2 t(3) t(2)^2+2 t(1) t(3)^2 t(4) t(2)^2-2 t(3)^2 t(4) t(2)^2-t(1) t(3) t(4) t(2)^2+3 t(3) t(4) t(2)^2-t(4) t(2)^2+t(2)^2+2 t(1) t(3)^2 t(2)-t(3)^2 t(2)+t(1) t(2)-3 t(1) t(3) t(2)+3 t(3) t(2)-3 t(1) t(3)^2 t(4) t(2)+t(3)^2 t(4) t(2)-t(1) t(4) t(2)+3 t(1) t(3) t(4) t(2)-3 t(3) t(4) t(2)+2 t(4) t(2)-3 t(2)-t(1) t(3)^2-2 t(1)+3 t(1) t(3)-t(3)+t(1) t(3)^2 t(4)+t(1) t(4)-2 t(1) t(3) t(4)+t(3) t(4)-t(4)+2}{\sqrt{t(1)} t(2) t(3) \sqrt{t(4)}} (db)
Jones polynomial q^{23/2}-4 q^{21/2}+8 q^{19/2}-13 q^{17/2}+16 q^{15/2}-19 q^{13/2}+16 q^{11/2}-16 q^{9/2}+9 q^{7/2}-7 q^{5/2}+2 q^{3/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial z^5 a^{-9} +2 z^3 a^{-9} - a^{-9} z^{-3} - a^{-9} z^{-1} -z^7 a^{-7} -3 z^5 a^{-7} -z^3 a^{-7} +3 a^{-7} z^{-3} +4 z a^{-7} +6 a^{-7} z^{-1} -z^7 a^{-5} -4 z^5 a^{-5} -7 z^3 a^{-5} -3 a^{-5} z^{-3} -10 z a^{-5} -9 a^{-5} z^{-1} +z^5 a^{-3} +4 z^3 a^{-3} + a^{-3} z^{-3} +6 z a^{-3} +4 a^{-3} z^{-1} (db)
Kauffman polynomial z^4 a^{-14} +4 z^5 a^{-13} -2 z^3 a^{-13} +8 z^6 a^{-12} -7 z^4 a^{-12} +z^2 a^{-12} +11 z^7 a^{-11} -15 z^5 a^{-11} +8 z^3 a^{-11} -2 z a^{-11} +10 z^8 a^{-10} -13 z^6 a^{-10} +2 z^4 a^{-10} +2 z^2 a^{-10} +5 z^9 a^{-9} +5 z^7 a^{-9} -32 z^5 a^{-9} +32 z^3 a^{-9} - a^{-9} z^{-3} -16 z a^{-9} +5 a^{-9} z^{-1} +z^{10} a^{-8} +14 z^8 a^{-8} -37 z^6 a^{-8} +17 z^4 a^{-8} +10 z^2 a^{-8} +3 a^{-8} z^{-2} -10 a^{-8} +7 z^9 a^{-7} -7 z^7 a^{-7} -28 z^5 a^{-7} +48 z^3 a^{-7} -3 a^{-7} z^{-3} -31 z a^{-7} +12 a^{-7} z^{-1} +z^{10} a^{-6} +6 z^8 a^{-6} -22 z^6 a^{-6} +9 z^4 a^{-6} +18 z^2 a^{-6} +6 a^{-6} z^{-2} -19 a^{-6} +2 z^9 a^{-5} -20 z^5 a^{-5} +36 z^3 a^{-5} -3 a^{-5} z^{-3} -27 z a^{-5} +12 a^{-5} z^{-1} +2 z^8 a^{-4} -6 z^6 a^{-4} +2 z^4 a^{-4} +9 z^2 a^{-4} +3 a^{-4} z^{-2} -10 a^{-4} +z^7 a^{-3} -5 z^5 a^{-3} +10 z^3 a^{-3} - a^{-3} z^{-3} -10 z a^{-3} +5 a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
24           1-1
22          3 3
20         51 -4
18        83  5
16       107   -3
14      96    3
12     912     3
10    77      0
8   411       7
6  35        -2
4 16         5
2 1          -1
01           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a543.gif

L11a543

L11a545.gif

L11a545