# L11a545

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a545 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{u v^2 w^2 x-2 u v^2 w^2-2 u v^2 w x+3 u v^2 w+u v^2 x-u v^2-2 u v w^2 x+2 u v w^2+5 u v w x-5 u v w-3 u v x+2 u v-2 u w x+2 u w+2 u x-u-v^2 w^2 x+2 v^2 w^2+2 v^2 w x-2 v^2 w+2 v w^2 x-3 v w^2-5 v w x+5 v w+2 v x-2 v-w^2 x+w^2+3 w x-2 w-2 x+1}{\sqrt{u} v w \sqrt{x}}$ (db) Jones polynomial $\frac{21}{q^{9/2}}-\frac{25}{q^{7/2}}+\frac{20}{q^{5/2}}+q^{3/2}-\frac{16}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{8}{q^{15/2}}+\frac{13}{q^{13/2}}-\frac{21}{q^{11/2}}-5 \sqrt{q}+\frac{10}{\sqrt{q}}$ (db) Signature -3 (db) HOMFLY-PT polynomial $z a^9+a^9 z^{-1} +a^9 z^{-3} -3 z^3 a^7-6 z a^7-6 a^7 z^{-1} -3 a^7 z^{-3} +3 z^5 a^5+8 z^3 a^5+10 z a^5+9 a^5 z^{-1} +3 a^5 z^{-3} -z^7 a^3-3 z^5 a^3-4 z^3 a^3-4 z a^3-4 a^3 z^{-1} -a^3 z^{-3} +z^5 a+z^3 a-z a$ (db) Kauffman polynomial $a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-4 a^{10} z^4+a^{10} z^2+6 a^9 z^7-10 a^9 z^5+12 a^9 z^3-a^9 z^{-3} -11 a^9 z+5 a^9 z^{-1} +7 a^8 z^8-6 a^8 z^6-4 a^8 z^4+14 a^8 z^2+3 a^8 z^{-2} -10 a^8+5 a^7 z^9+7 a^7 z^7-35 a^7 z^5+50 a^7 z^3-3 a^7 z^{-3} -33 a^7 z+12 a^7 z^{-1} +2 a^6 z^{10}+13 a^6 z^8-25 a^6 z^6+26 a^6 z^2+6 a^6 z^{-2} -19 a^6+12 a^5 z^9-10 a^5 z^7-27 a^5 z^5+46 a^5 z^3-3 a^5 z^{-3} -33 a^5 z+12 a^5 z^{-1} +2 a^4 z^{10}+15 a^4 z^8-37 a^4 z^6+11 a^4 z^4+14 a^4 z^2+3 a^4 z^{-2} -10 a^4+7 a^3 z^9-6 a^3 z^7-13 a^3 z^5+14 a^3 z^3-a^3 z^{-3} -11 a^3 z+5 a^3 z^{-1} +9 a^2 z^8-20 a^2 z^6+10 a^2 z^4+a^2 z^2+5 a z^7-10 a z^5+4 a z^3+a z+z^6-z^4$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-8-7-6-5-4-3-2-10123χ
4           1-1
2          4 4
0         61 -5
-2        104  6
-4       128   -4
-6      138    5
-8     1014     4
-10    1111      0
-12   412       8
-14  49        -5
-16 16         5
-18 2          -2
-201           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-4$ $i=-2$ $r=-8$ ${\mathbb Z}$ $r=-7$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-6$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{4}$ $r=-5$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-4$ ${\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9}$ ${\mathbb Z}^{11}$ $r=-3$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=-2$ ${\mathbb Z}^{14}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{13}$ $r=-1$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{12}$ ${\mathbb Z}^{12}$ $r=0$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{10}$ $r=1$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=2$ ${\mathbb Z}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=3$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.