L11a75

From Knot Atlas
Jump to: navigation, search

L11a74.gif

L11a74

L11a76.gif

L11a76

Contents

L11a75.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a75 at Knotilus!


Link Presentations

[edit Notes on L11a75's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X20,15,21,16 X16,7,17,8 X18,9,19,10 X8,17,9,18 X10,19,11,20 X22,13,5,14 X14,21,15,22 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 4, -6, 5, -7, 11, -2, 8, -9, 3, -4, 6, -5, 7, -3, 9, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a75 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(2)^5+3 t(1) t(2)^4-4 t(2)^4-4 t(1) t(2)^3+4 t(2)^3+4 t(1) t(2)^2-4 t(2)^2-4 t(1) t(2)+3 t(2)+2 t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\frac{4}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{2}{q^{25/2}}+\frac{5}{q^{23/2}}-\frac{7}{q^{21/2}}+\frac{9}{q^{19/2}}-\frac{11}{q^{17/2}}+\frac{10}{q^{15/2}}-\frac{10}{q^{13/2}}+\frac{6}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -z a^{13}-2 a^{13} z^{-1} +3 z^3 a^{11}+8 z a^{11}+4 a^{11} z^{-1} -2 z^5 a^9-6 z^3 a^9-4 z a^9-a^9 z^{-1} -2 z^5 a^7-6 z^3 a^7-4 z a^7-a^7 z^{-1} -z^5 a^5-3 z^3 a^5-z a^5 (db)
Kauffman polynomial -z^6 a^{16}+4 z^4 a^{16}-5 z^2 a^{16}+2 a^{16}-2 z^7 a^{15}+6 z^5 a^{15}-3 z^3 a^{15}-z a^{15}-2 z^8 a^{14}+3 z^6 a^{14}+5 z^4 a^{14}-5 z^2 a^{14}+a^{14}-2 z^9 a^{13}+5 z^7 a^{13}-7 z^5 a^{13}+13 z^3 a^{13}-8 z a^{13}+2 a^{13} z^{-1} -z^{10} a^{12}+7 z^6 a^{12}-17 z^4 a^{12}+19 z^2 a^{12}-6 a^{12}-5 z^9 a^{11}+21 z^7 a^{11}-40 z^5 a^{11}+34 z^3 a^{11}-15 z a^{11}+4 a^{11} z^{-1} -z^{10} a^{10}-z^8 a^{10}+13 z^6 a^{10}-29 z^4 a^{10}+18 z^2 a^{10}-5 a^{10}-3 z^9 a^9+11 z^7 a^9-17 z^5 a^9+6 z^3 a^9-2 z a^9+a^9 z^{-1} -3 z^8 a^8+8 z^6 a^8-6 z^4 a^8-2 z^2 a^8+a^8-3 z^7 a^7+9 z^5 a^7-9 z^3 a^7+5 z a^7-a^7 z^{-1} -2 z^6 a^6+5 z^4 a^6-z^2 a^6-z^5 a^5+3 z^3 a^5-z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          21-1
-8         2  2
-10        42  -2
-12       62   4
-14      55    0
-16     65     1
-18    35      2
-20   46       -2
-22  13        2
-24 14         -3
-26 1          1
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-7 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a74.gif

L11a74

L11a76.gif

L11a76