L11a79

From Knot Atlas
Jump to: navigation, search

L11a78.gif

L11a78

L11a80.gif

L11a80

Contents

L11a79.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a79 at Knotilus!


Link Presentations

[edit Notes on L11a79's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,8,17,7 X22,18,5,17 X18,14,19,13 X14,22,15,21 X20,10,21,9 X8,16,9,15 X10,20,11,19 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, -8, 7, -9, 11, -2, 5, -6, 8, -3, 4, -5, 9, -7, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a79 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{3 t(1) t(2)^3-7 t(2)^3-11 t(1) t(2)^2+14 t(2)^2+14 t(1) t(2)-11 t(2)-7 t(1)+3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -15 q^{9/2}+20 q^{7/2}-\frac{1}{q^{7/2}}-23 q^{5/2}+\frac{3}{q^{5/2}}+22 q^{3/2}-\frac{8}{q^{3/2}}+q^{15/2}-4 q^{13/2}+10 q^{11/2}-20 \sqrt{q}+\frac{13}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^{-7} -3 z^3 a^{-5} -z a^{-5} + a^{-5} z^{-1} +2 z^5 a^{-3} +2 z^3 a^{-3} +a^3 z+z a^{-3} - a^{-3} z^{-1} +z^5 a^{-1} -2 a z^3-3 z^3 a^{-1} +a z-5 z a^{-1} +2 a z^{-1} -2 a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -2 z^4 a^{-8} +z^2 a^{-8} +4 z^7 a^{-7} -8 z^5 a^{-7} +4 z^3 a^{-7} -z a^{-7} +8 z^8 a^{-6} -19 z^6 a^{-6} +15 z^4 a^{-6} -10 z^2 a^{-6} +4 a^{-6} +7 z^9 a^{-5} -9 z^7 a^{-5} -7 z^5 a^{-5} +9 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +2 z^{10} a^{-4} +16 z^8 a^{-4} -54 z^6 a^{-4} +59 z^4 a^{-4} -34 z^2 a^{-4} +9 a^{-4} +13 z^9 a^{-3} -21 z^7 a^{-3} +a^3 z^5+2 z^5 a^{-3} -2 a^3 z^3+9 z^3 a^{-3} +a^3 z-2 z a^{-3} - a^{-3} z^{-1} +2 z^{10} a^{-2} +15 z^8 a^{-2} +3 a^2 z^6-44 z^6 a^{-2} -4 a^2 z^4+46 z^4 a^{-2} +a^2 z^2-20 z^2 a^{-2} +4 a^{-2} +6 z^9 a^{-1} +6 a z^7-2 z^7 a^{-1} -10 a z^5-10 z^5 a^{-1} +10 a z^3+16 z^3 a^{-1} -7 a z-9 z a^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} +7 z^8-7 z^6+4 z^2-2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          3 3
12         71 -6
10        83  5
8       127   -5
6      118    3
4     1112     1
2    911      -2
0   512       7
-2  38        -5
-4  5         5
-613          -2
-81           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a78.gif

L11a78

L11a80.gif

L11a80