L11a81

From Knot Atlas
Jump to: navigation, search

L11a80.gif

L11a80

L11a82.gif

L11a82

Contents

L11a81.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a81 at Knotilus!


Link Presentations

[edit Notes on L11a81's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,13,19,14 X10,17,11,18 X8,21,9,22 X16,7,17,8 X20,9,21,10 X22,15,5,16 X14,19,15,20 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 6, -5, 7, -4, 11, -2, 3, -9, 8, -6, 4, -3, 9, -7, 5, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a81 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{5 u v^4-11 u v^3+12 u v^2-7 u v+2 u+2 v^5-7 v^4+12 v^3-11 v^2+5 v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{11}{q^{9/2}}+\frac{4}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{3}{q^{25/2}}+\frac{8}{q^{23/2}}-\frac{14}{q^{21/2}}+\frac{20}{q^{19/2}}-\frac{24}{q^{17/2}}+\frac{24}{q^{15/2}}-\frac{22}{q^{13/2}}+\frac{16}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{13} (-z)-a^{13} z^{-1} +3 a^{11} z^3+4 a^{11} z+a^{11} z^{-1} -2 a^9 z^5-a^9 z^3+4 a^9 z+2 a^9 z^{-1} -4 a^7 z^5-11 a^7 z^3-9 a^7 z-2 a^7 z^{-1} -a^5 z^5-a^5 z^3 (db)
Kauffman polynomial -z^6 a^{16}+3 z^4 a^{16}-3 z^2 a^{16}+a^{16}-3 z^7 a^{15}+7 z^5 a^{15}-5 z^3 a^{15}+z a^{15}-5 z^8 a^{14}+9 z^6 a^{14}-4 z^4 a^{14}-5 z^9 a^{13}+4 z^7 a^{13}+5 z^5 a^{13}-4 z^3 a^{13}-z a^{13}+a^{13} z^{-1} -2 z^{10} a^{12}-12 z^8 a^{12}+34 z^6 a^{12}-31 z^4 a^{12}+15 z^2 a^{12}-3 a^{12}-13 z^9 a^{11}+18 z^7 a^{11}-3 z^5 a^{11}+2 z^3 a^{11}-4 z a^{11}+a^{11} z^{-1} -2 z^{10} a^{10}-19 z^8 a^{10}+45 z^6 a^{10}-31 z^4 a^{10}+7 z^2 a^{10}-8 z^9 a^9+z^7 a^9+17 z^5 a^9-15 z^3 a^9+7 z a^9-2 a^9 z^{-1} -12 z^8 a^8+17 z^6 a^8-4 z^4 a^8-5 z^2 a^8+3 a^8-10 z^7 a^7+17 z^5 a^7-15 z^3 a^7+9 z a^7-2 a^7 z^{-1} -4 z^6 a^6+3 z^4 a^6-z^5 a^5+z^3 a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          41-3
-8         7  7
-10        94  -5
-12       137   6
-14      1210    -2
-16     1212     0
-18    812      4
-20   612       -6
-22  28        6
-24 16         -5
-26 2          2
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-8 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-7 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-6 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=-5 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{13}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a80.gif

L11a80

L11a82.gif

L11a82