L11a9

From Knot Atlas
Jump to: navigation, search

L11a8.gif

L11a8

L11a10.gif

L11a10

Contents

L11a9.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a9 at Knotilus!


Link Presentations

[edit Notes on L11a9's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X8493 X22,14,5,13 X14,22,15,21 X18,12,19,11 X20,10,21,9 X10,20,11,19 X2,16,3,15
Gauss code {1, -11, 5, -3}, {4, -1, 2, -5, 9, -10, 8, -4, 6, -7, 11, -2, 3, -8, 10, -9, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a9 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(4 v^2-7 v+4\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -16 q^{9/2}+18 q^{7/2}-20 q^{5/2}+\frac{1}{q^{5/2}}+17 q^{3/2}-\frac{4}{q^{3/2}}-q^{17/2}+3 q^{15/2}-6 q^{13/2}+12 q^{11/2}-14 \sqrt{q}+\frac{8}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-7} -z a^{-7} +z^5 a^{-5} +z^3 a^{-5} +2 z a^{-5} + a^{-5} z^{-1} +2 z^5 a^{-3} +2 z^3 a^{-3} -2 z a^{-3} -3 a^{-3} z^{-1} +z^5 a^{-1} -a z^3+z a^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial z^7 a^{-9} -4 z^5 a^{-9} +4 z^3 a^{-9} +3 z^8 a^{-8} -12 z^6 a^{-8} +16 z^4 a^{-8} -8 z^2 a^{-8} +4 z^9 a^{-7} -13 z^7 a^{-7} +13 z^5 a^{-7} -6 z^3 a^{-7} +2 z a^{-7} +2 z^{10} a^{-6} +3 z^8 a^{-6} -26 z^6 a^{-6} +34 z^4 a^{-6} -17 z^2 a^{-6} + a^{-6} +11 z^9 a^{-5} -29 z^7 a^{-5} +20 z^5 a^{-5} -7 z^3 a^{-5} +4 z a^{-5} - a^{-5} z^{-1} +2 z^{10} a^{-4} +12 z^8 a^{-4} -42 z^6 a^{-4} +36 z^4 a^{-4} -13 z^2 a^{-4} +3 a^{-4} +7 z^9 a^{-3} -3 z^7 a^{-3} -18 z^5 a^{-3} +13 z^3 a^{-3} +3 z a^{-3} -3 a^{-3} z^{-1} +12 z^8 a^{-2} -20 z^6 a^{-2} +a^2 z^4+11 z^4 a^{-2} -4 z^2 a^{-2} +3 a^{-2} +12 z^7 a^{-1} +4 a z^5-17 z^5 a^{-1} -2 a z^3+8 z^3 a^{-1} +z a^{-1} -2 a^{-1} z^{-1} +8 z^6-6 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
18           11
16          2 -2
14         41 3
12        82  -6
10       84   4
8      108    -2
6     108     2
4    710      3
2   710       -3
0  39        6
-2 15         -4
-4 3          3
-61           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a8.gif

L11a8

L11a10.gif

L11a10