# L11a98

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a98 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{2 t(1) t(2)^5-2 t(2)^5-5 t(1) t(2)^4+7 t(2)^4+8 t(1) t(2)^3-9 t(2)^3-9 t(1) t(2)^2+8 t(2)^2+7 t(1) t(2)-5 t(2)-2 t(1)+2}{\sqrt{t(1)} t(2)^{5/2}}$ (db) Jones polynomial $q^{11/2}-4 q^{9/2}+10 q^{7/2}-15 q^{5/2}+19 q^{3/2}-22 \sqrt{q}+\frac{20}{\sqrt{q}}-\frac{18}{q^{3/2}}+\frac{12}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{1}{q^{11/2}}$ (db) Signature 1 (db) HOMFLY-PT polynomial $-a z^7-z^7 a^{-1} +a^3 z^5-4 a z^5-3 z^5 a^{-1} +z^5 a^{-3} +3 a^3 z^3-7 a z^3-3 z^3 a^{-1} +2 z^3 a^{-3} +3 a^3 z-5 a z-2 z a^{-1} +2 z a^{-3} +a^3 z^{-1} -2 a^{-1} z^{-1} + a^{-3} z^{-1}$ (db) Kauffman polynomial $z^4 a^{-6} +a^5 z^7-4 a^5 z^5+4 z^5 a^{-5} +5 a^5 z^3-2 a^5 z+3 a^4 z^8-11 a^4 z^6+10 z^6 a^{-4} +13 a^4 z^4-9 z^4 a^{-4} -5 a^4 z^2+5 z^2 a^{-4} -2 a^{-4} +4 a^3 z^9-11 a^3 z^7+15 z^7 a^{-3} +7 a^3 z^5-21 z^5 a^{-3} +10 z^3 a^{-3} +2 a^3 z-2 z a^{-3} -a^3 z^{-1} + a^{-3} z^{-1} +2 a^2 z^{10}+5 a^2 z^8+14 z^8 a^{-2} -30 a^2 z^6-18 z^6 a^{-2} +34 a^2 z^4-2 z^4 a^{-2} -12 a^2 z^2+10 z^2 a^{-2} +a^2-5 a^{-2} +12 a z^9+8 z^9 a^{-1} -28 a z^7-z^7 a^{-1} +14 a z^5-22 z^5 a^{-1} -2 a z^3+13 z^3 a^{-1} +2 a z-4 z a^{-1} +2 a^{-1} z^{-1} +2 z^{10}+16 z^8-47 z^6+29 z^4-2 z^2-3$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-6-5-4-3-2-1012345χ
12           1-1
10          3 3
8         71 -6
6        83  5
4       117   -4
2      118    3
0     1012     2
-2    810      -2
-4   410       6
-6  38        -5
-8 15         4
-10 2          -2
-121           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=0$ $i=2$ $r=-6$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{3}$ $r=-3$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-2$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=-1$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=0$ ${\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{11}$ $r=1$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{11}$ $r=2$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=3$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=4$ ${\mathbb Z}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=5$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.